Loading…
An Ultra-Wideband Reflective Phase Gradient Metasurface Using Pancharatnam-Berry Phase
Designing a transmissive and reflective phase gradient metasurface (PGM) using Pancharatnam-Berry (PB) geometrical phase must be based on an appropriate metasurface, which can realize circular-polarization (CP)-conversion transmission and CP-maintaining reflection, respectively. When an appropriate...
Saved in:
Published in: | IEEE access 2019, Vol.7, p.13317-13325 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-e9e6929912ec90a2bcd0d3a4658a7a1dc582342ea6c3d54f830c8c3b060c6bbe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-e9e6929912ec90a2bcd0d3a4658a7a1dc582342ea6c3d54f830c8c3b060c6bbe3 |
container_end_page | 13325 |
container_issue | |
container_start_page | 13317 |
container_title | IEEE access |
container_volume | 7 |
creator | Lin, Baoqin Guo, Jianxin Lv, Lintao Liu, Zhe Ji, Xiang Wu, Jing |
description | Designing a transmissive and reflective phase gradient metasurface (PGM) using Pancharatnam-Berry (PB) geometrical phase must be based on an appropriate metasurface, which can realize circular-polarization (CP)-conversion transmission and CP-maintaining reflection, respectively. When an appropriate metasurface is proposed, a PGM can be easily constructed by gradually rotating the anisotropic or chiral resonators in different unit cells. In this paper, to design an ultra-wideband reflective PGM, first, an ultra-wideband CP-maintaining metasurface is proposed, and the numerical simulation results show that the proposed metasurface can realize CP-maintaining reflection at CP incidence between 8.43 and 26.93 GHz; in addition, a PB phase will be generated in its co-polarized reflection coefficient by rotating the anisotropic resonators in its unit cells. Thus, based on the metasurface, an ultra-wideband PGM is constructed successfully, the simulated and experimental results show that the PGM can realize ultra-wideband anomalous reflection at arbitrarily polarized incidence, and almost all the reflected waves at right-handed and left-handed CP (RHCP and LHCP) incidences will both be deflected to an anomalous direction; in addition, the reflected waves at linear and elliptical polarized (LP and EP) incidences will be separated into two beams for the LP and EP waves that can both be decomposed into a pair of RHCP and LHCP waves. Furthermore, finally, a detailed theoretical analysis is presented for the CP-maintaining reflection of the proposed metasurface. |
doi_str_mv | 10.1109/ACCESS.2019.2894133 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8620994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8620994</ieee_id><doaj_id>oai_doaj_org_article_2fcc3ee3f2984c5d977df16bbfd7cd4b</doaj_id><sourcerecordid>2455633111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-e9e6929912ec90a2bcd0d3a4658a7a1dc582342ea6c3d54f830c8c3b060c6bbe3</originalsourceid><addsrcrecordid>eNpNkVtLw0AQhYMoKNpf4EvA59S9ZbP7WIuXgqJYq4_LZHZWU2qiu6ngvzcaEedlhsOcbwZOlh1zNuWc2dPZfH6-XE4F43YqjFVcyp3sQHBtC1lKvftv3s8mKa3ZUGaQyuoge5y1-WrTRyieGk81tD6_p7Ah7JsPyu9eIFF-GcE31Pb5DfWQtjEAUr5KTfuc30GLLxChb-G1OKMYP0fPUbYXYJNo8tsPs9XF-cP8qri-vVzMZ9cFKmb6gixpK6zlgtAyEDV65iUoXRqogHssjZBKEGiUvlTBSIYGZc00Q13XJA-zxcj1HazdW2xeIX66Dhr3I3Tx2UHsG9yQEwFREskgrFFYeltVPvCBEnyFXtUD62RkvcXufUupd-tuG9vhfSdUWWopOefDlhy3MHYpRQp_Vzlz33m4MQ_3nYf7zWNwHY-uhoj-HEYLZq2SXyY2huo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455633111</pqid></control><display><type>article</type><title>An Ultra-Wideband Reflective Phase Gradient Metasurface Using Pancharatnam-Berry Phase</title><source>IEEE Open Access Journals</source><creator>Lin, Baoqin ; Guo, Jianxin ; Lv, Lintao ; Liu, Zhe ; Ji, Xiang ; Wu, Jing</creator><creatorcontrib>Lin, Baoqin ; Guo, Jianxin ; Lv, Lintao ; Liu, Zhe ; Ji, Xiang ; Wu, Jing</creatorcontrib><description>Designing a transmissive and reflective phase gradient metasurface (PGM) using Pancharatnam-Berry (PB) geometrical phase must be based on an appropriate metasurface, which can realize circular-polarization (CP)-conversion transmission and CP-maintaining reflection, respectively. When an appropriate metasurface is proposed, a PGM can be easily constructed by gradually rotating the anisotropic or chiral resonators in different unit cells. In this paper, to design an ultra-wideband reflective PGM, first, an ultra-wideband CP-maintaining metasurface is proposed, and the numerical simulation results show that the proposed metasurface can realize CP-maintaining reflection at CP incidence between 8.43 and 26.93 GHz; in addition, a PB phase will be generated in its co-polarized reflection coefficient by rotating the anisotropic resonators in its unit cells. Thus, based on the metasurface, an ultra-wideband PGM is constructed successfully, the simulated and experimental results show that the PGM can realize ultra-wideband anomalous reflection at arbitrarily polarized incidence, and almost all the reflected waves at right-handed and left-handed CP (RHCP and LHCP) incidences will both be deflected to an anomalous direction; in addition, the reflected waves at linear and elliptical polarized (LP and EP) incidences will be separated into two beams for the LP and EP waves that can both be decomposed into a pair of RHCP and LHCP waves. Furthermore, finally, a detailed theoretical analysis is presented for the CP-maintaining reflection of the proposed metasurface.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2894133</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>circular polarization ; metasurface ; Metasurfaces ; Phase gradient ; polarization-maintaining reflection ; Reflectance ; Reflected waves ; Reflection ; Reflection coefficient ; Resonant frequency ; Resonators ; Rotation ; Shape ; Ultra wideband technology ; Ultrawideband ; Wideband</subject><ispartof>IEEE access, 2019, Vol.7, p.13317-13325</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-e9e6929912ec90a2bcd0d3a4658a7a1dc582342ea6c3d54f830c8c3b060c6bbe3</citedby><cites>FETCH-LOGICAL-c408t-e9e6929912ec90a2bcd0d3a4658a7a1dc582342ea6c3d54f830c8c3b060c6bbe3</cites><orcidid>0000-0003-0966-368X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8620994$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Lin, Baoqin</creatorcontrib><creatorcontrib>Guo, Jianxin</creatorcontrib><creatorcontrib>Lv, Lintao</creatorcontrib><creatorcontrib>Liu, Zhe</creatorcontrib><creatorcontrib>Ji, Xiang</creatorcontrib><creatorcontrib>Wu, Jing</creatorcontrib><title>An Ultra-Wideband Reflective Phase Gradient Metasurface Using Pancharatnam-Berry Phase</title><title>IEEE access</title><addtitle>Access</addtitle><description>Designing a transmissive and reflective phase gradient metasurface (PGM) using Pancharatnam-Berry (PB) geometrical phase must be based on an appropriate metasurface, which can realize circular-polarization (CP)-conversion transmission and CP-maintaining reflection, respectively. When an appropriate metasurface is proposed, a PGM can be easily constructed by gradually rotating the anisotropic or chiral resonators in different unit cells. In this paper, to design an ultra-wideband reflective PGM, first, an ultra-wideband CP-maintaining metasurface is proposed, and the numerical simulation results show that the proposed metasurface can realize CP-maintaining reflection at CP incidence between 8.43 and 26.93 GHz; in addition, a PB phase will be generated in its co-polarized reflection coefficient by rotating the anisotropic resonators in its unit cells. Thus, based on the metasurface, an ultra-wideband PGM is constructed successfully, the simulated and experimental results show that the PGM can realize ultra-wideband anomalous reflection at arbitrarily polarized incidence, and almost all the reflected waves at right-handed and left-handed CP (RHCP and LHCP) incidences will both be deflected to an anomalous direction; in addition, the reflected waves at linear and elliptical polarized (LP and EP) incidences will be separated into two beams for the LP and EP waves that can both be decomposed into a pair of RHCP and LHCP waves. Furthermore, finally, a detailed theoretical analysis is presented for the CP-maintaining reflection of the proposed metasurface.</description><subject>circular polarization</subject><subject>metasurface</subject><subject>Metasurfaces</subject><subject>Phase gradient</subject><subject>polarization-maintaining reflection</subject><subject>Reflectance</subject><subject>Reflected waves</subject><subject>Reflection</subject><subject>Reflection coefficient</subject><subject>Resonant frequency</subject><subject>Resonators</subject><subject>Rotation</subject><subject>Shape</subject><subject>Ultra wideband technology</subject><subject>Ultrawideband</subject><subject>Wideband</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtLw0AQhYMoKNpf4EvA59S9ZbP7WIuXgqJYq4_LZHZWU2qiu6ngvzcaEedlhsOcbwZOlh1zNuWc2dPZfH6-XE4F43YqjFVcyp3sQHBtC1lKvftv3s8mKa3ZUGaQyuoge5y1-WrTRyieGk81tD6_p7Ah7JsPyu9eIFF-GcE31Pb5DfWQtjEAUr5KTfuc30GLLxChb-G1OKMYP0fPUbYXYJNo8tsPs9XF-cP8qri-vVzMZ9cFKmb6gixpK6zlgtAyEDV65iUoXRqogHssjZBKEGiUvlTBSIYGZc00Q13XJA-zxcj1HazdW2xeIX66Dhr3I3Tx2UHsG9yQEwFREskgrFFYeltVPvCBEnyFXtUD62RkvcXufUupd-tuG9vhfSdUWWopOefDlhy3MHYpRQp_Vzlz33m4MQ_3nYf7zWNwHY-uhoj-HEYLZq2SXyY2huo</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Lin, Baoqin</creator><creator>Guo, Jianxin</creator><creator>Lv, Lintao</creator><creator>Liu, Zhe</creator><creator>Ji, Xiang</creator><creator>Wu, Jing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0966-368X</orcidid></search><sort><creationdate>2019</creationdate><title>An Ultra-Wideband Reflective Phase Gradient Metasurface Using Pancharatnam-Berry Phase</title><author>Lin, Baoqin ; Guo, Jianxin ; Lv, Lintao ; Liu, Zhe ; Ji, Xiang ; Wu, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-e9e6929912ec90a2bcd0d3a4658a7a1dc582342ea6c3d54f830c8c3b060c6bbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>circular polarization</topic><topic>metasurface</topic><topic>Metasurfaces</topic><topic>Phase gradient</topic><topic>polarization-maintaining reflection</topic><topic>Reflectance</topic><topic>Reflected waves</topic><topic>Reflection</topic><topic>Reflection coefficient</topic><topic>Resonant frequency</topic><topic>Resonators</topic><topic>Rotation</topic><topic>Shape</topic><topic>Ultra wideband technology</topic><topic>Ultrawideband</topic><topic>Wideband</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Baoqin</creatorcontrib><creatorcontrib>Guo, Jianxin</creatorcontrib><creatorcontrib>Lv, Lintao</creatorcontrib><creatorcontrib>Liu, Zhe</creatorcontrib><creatorcontrib>Ji, Xiang</creatorcontrib><creatorcontrib>Wu, Jing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Baoqin</au><au>Guo, Jianxin</au><au>Lv, Lintao</au><au>Liu, Zhe</au><au>Ji, Xiang</au><au>Wu, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Ultra-Wideband Reflective Phase Gradient Metasurface Using Pancharatnam-Berry Phase</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>13317</spage><epage>13325</epage><pages>13317-13325</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Designing a transmissive and reflective phase gradient metasurface (PGM) using Pancharatnam-Berry (PB) geometrical phase must be based on an appropriate metasurface, which can realize circular-polarization (CP)-conversion transmission and CP-maintaining reflection, respectively. When an appropriate metasurface is proposed, a PGM can be easily constructed by gradually rotating the anisotropic or chiral resonators in different unit cells. In this paper, to design an ultra-wideband reflective PGM, first, an ultra-wideband CP-maintaining metasurface is proposed, and the numerical simulation results show that the proposed metasurface can realize CP-maintaining reflection at CP incidence between 8.43 and 26.93 GHz; in addition, a PB phase will be generated in its co-polarized reflection coefficient by rotating the anisotropic resonators in its unit cells. Thus, based on the metasurface, an ultra-wideband PGM is constructed successfully, the simulated and experimental results show that the PGM can realize ultra-wideband anomalous reflection at arbitrarily polarized incidence, and almost all the reflected waves at right-handed and left-handed CP (RHCP and LHCP) incidences will both be deflected to an anomalous direction; in addition, the reflected waves at linear and elliptical polarized (LP and EP) incidences will be separated into two beams for the LP and EP waves that can both be decomposed into a pair of RHCP and LHCP waves. Furthermore, finally, a detailed theoretical analysis is presented for the CP-maintaining reflection of the proposed metasurface.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2894133</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0966-368X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.13317-13325 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_8620994 |
source | IEEE Open Access Journals |
subjects | circular polarization metasurface Metasurfaces Phase gradient polarization-maintaining reflection Reflectance Reflected waves Reflection Reflection coefficient Resonant frequency Resonators Rotation Shape Ultra wideband technology Ultrawideband Wideband |
title | An Ultra-Wideband Reflective Phase Gradient Metasurface Using Pancharatnam-Berry Phase |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Ultra-Wideband%20Reflective%20Phase%20Gradient%20Metasurface%20Using%20Pancharatnam-Berry%20Phase&rft.jtitle=IEEE%20access&rft.au=Lin,%20Baoqin&rft.date=2019&rft.volume=7&rft.spage=13317&rft.epage=13325&rft.pages=13317-13325&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2894133&rft_dat=%3Cproquest_ieee_%3E2455633111%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-e9e6929912ec90a2bcd0d3a4658a7a1dc582342ea6c3d54f830c8c3b060c6bbe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455633111&rft_id=info:pmid/&rft_ieee_id=8620994&rfr_iscdi=true |