Loading…

Improvements of pattern recognition by using evidence theory. Application to tag identification

The authors describe the improvements provided to a pattern recognition task by the use of evidence theory when combining different classifier results. The application of this method concerns the identification of buried metal tags detected by an eddy current sensor. These tags are characteristic of...

Full description

Saved in:
Bibliographic Details
Main Authors: Belloir, F., Billat, A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page TUB5/8 vol.1
container_issue
container_start_page TUB5/3
container_title
container_volume 1
creator Belloir, F.
Billat, A.
description The authors describe the improvements provided to a pattern recognition task by the use of evidence theory when combining different classifier results. The application of this method concerns the identification of buried metal tags detected by an eddy current sensor. These tags are characteristic of the different contents (gas, water, ...) of the buried pipes. We have developed classical, fuzzy and neural classifiers, each one giving a confidence level relative to its decision. We show that an appropriate mass distribution coupled with a classical combination rule, without any a priori knowledge, provide a more important performance improvement than that obtained by the application of a simple weighted voting method.
doi_str_mv 10.1109/IFIC.2000.862672
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_862672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>862672</ieee_id><sourcerecordid>862672</sourcerecordid><originalsourceid>FETCH-LOGICAL-i89t-f215fc045c869f33835e0060fa8e083359e35215e3114df01768c86fab1fa62f3</originalsourceid><addsrcrecordid>eNotkMtqwzAURAWl0JJ6X7rSD9jVw3otQ2haQyCb7I3iXLkqsWRkNeC_r9NkNcPhMItB6JWSilJi3ptts6kYIaTSkknFHlBhlGaKCbVAop5QMU0_18qNoLJ-Rm0zjCleYICQJxwdHm3OkAJO0MU--OxjwMcZ_04-9Bgu_gShA5y_Iaa5wutxPPvO_ls54mx7fDWyd3f6gh6dPU9Q3HOFDtuPw-ar3O0_m816V3ptcukYFa4jtei0NI5zzQUQIomzGojmXBjgYnGAU1qfHKFK6kV19kidlczxFXq7zXoAaMfkB5vm9nYC_wMTAVMx</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improvements of pattern recognition by using evidence theory. Application to tag identification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Belloir, F. ; Billat, A.</creator><creatorcontrib>Belloir, F. ; Billat, A.</creatorcontrib><description>The authors describe the improvements provided to a pattern recognition task by the use of evidence theory when combining different classifier results. The application of this method concerns the identification of buried metal tags detected by an eddy current sensor. These tags are characteristic of the different contents (gas, water, ...) of the buried pipes. We have developed classical, fuzzy and neural classifiers, each one giving a confidence level relative to its decision. We show that an appropriate mass distribution coupled with a classical combination rule, without any a priori knowledge, provide a more important performance improvement than that obtained by the application of a simple weighted voting method.</description><identifier>ISBN: 9782725700007</identifier><identifier>ISBN: 2725700000</identifier><identifier>DOI: 10.1109/IFIC.2000.862672</identifier><language>eng</language><publisher>IEEE</publisher><subject>Distributed computing ; Drilling ; Eddy currents ; Intelligent sensors ; Pattern recognition ; Reliability theory ; Sensor phenomena and characterization ; Technical Activities Guide -TAG ; Voting ; Water</subject><ispartof>Proceedings of the Third International Conference on Information Fusion, 2000, Vol.1, p.TUB5/3-TUB5/8 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/862672$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/862672$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Belloir, F.</creatorcontrib><creatorcontrib>Billat, A.</creatorcontrib><title>Improvements of pattern recognition by using evidence theory. Application to tag identification</title><title>Proceedings of the Third International Conference on Information Fusion</title><addtitle>IFIC</addtitle><description>The authors describe the improvements provided to a pattern recognition task by the use of evidence theory when combining different classifier results. The application of this method concerns the identification of buried metal tags detected by an eddy current sensor. These tags are characteristic of the different contents (gas, water, ...) of the buried pipes. We have developed classical, fuzzy and neural classifiers, each one giving a confidence level relative to its decision. We show that an appropriate mass distribution coupled with a classical combination rule, without any a priori knowledge, provide a more important performance improvement than that obtained by the application of a simple weighted voting method.</description><subject>Distributed computing</subject><subject>Drilling</subject><subject>Eddy currents</subject><subject>Intelligent sensors</subject><subject>Pattern recognition</subject><subject>Reliability theory</subject><subject>Sensor phenomena and characterization</subject><subject>Technical Activities Guide -TAG</subject><subject>Voting</subject><subject>Water</subject><isbn>9782725700007</isbn><isbn>2725700000</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtqwzAURAWl0JJ6X7rSD9jVw3otQ2haQyCb7I3iXLkqsWRkNeC_r9NkNcPhMItB6JWSilJi3ptts6kYIaTSkknFHlBhlGaKCbVAop5QMU0_18qNoLJ-Rm0zjCleYICQJxwdHm3OkAJO0MU--OxjwMcZ_04-9Bgu_gShA5y_Iaa5wutxPPvO_ls54mx7fDWyd3f6gh6dPU9Q3HOFDtuPw-ar3O0_m816V3ptcukYFa4jtei0NI5zzQUQIomzGojmXBjgYnGAU1qfHKFK6kV19kidlczxFXq7zXoAaMfkB5vm9nYC_wMTAVMx</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Belloir, F.</creator><creator>Billat, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2000</creationdate><title>Improvements of pattern recognition by using evidence theory. Application to tag identification</title><author>Belloir, F. ; Billat, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i89t-f215fc045c869f33835e0060fa8e083359e35215e3114df01768c86fab1fa62f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Distributed computing</topic><topic>Drilling</topic><topic>Eddy currents</topic><topic>Intelligent sensors</topic><topic>Pattern recognition</topic><topic>Reliability theory</topic><topic>Sensor phenomena and characterization</topic><topic>Technical Activities Guide -TAG</topic><topic>Voting</topic><topic>Water</topic><toplevel>online_resources</toplevel><creatorcontrib>Belloir, F.</creatorcontrib><creatorcontrib>Billat, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Belloir, F.</au><au>Billat, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improvements of pattern recognition by using evidence theory. Application to tag identification</atitle><btitle>Proceedings of the Third International Conference on Information Fusion</btitle><stitle>IFIC</stitle><date>2000</date><risdate>2000</risdate><volume>1</volume><spage>TUB5/3</spage><epage>TUB5/8 vol.1</epage><pages>TUB5/3-TUB5/8 vol.1</pages><isbn>9782725700007</isbn><isbn>2725700000</isbn><abstract>The authors describe the improvements provided to a pattern recognition task by the use of evidence theory when combining different classifier results. The application of this method concerns the identification of buried metal tags detected by an eddy current sensor. These tags are characteristic of the different contents (gas, water, ...) of the buried pipes. We have developed classical, fuzzy and neural classifiers, each one giving a confidence level relative to its decision. We show that an appropriate mass distribution coupled with a classical combination rule, without any a priori knowledge, provide a more important performance improvement than that obtained by the application of a simple weighted voting method.</abstract><pub>IEEE</pub><doi>10.1109/IFIC.2000.862672</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9782725700007
ispartof Proceedings of the Third International Conference on Information Fusion, 2000, Vol.1, p.TUB5/3-TUB5/8 vol.1
issn
language eng
recordid cdi_ieee_primary_862672
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Distributed computing
Drilling
Eddy currents
Intelligent sensors
Pattern recognition
Reliability theory
Sensor phenomena and characterization
Technical Activities Guide -TAG
Voting
Water
title Improvements of pattern recognition by using evidence theory. Application to tag identification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A42%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improvements%20of%20pattern%20recognition%20by%20using%20evidence%20theory.%20Application%20to%20tag%20identification&rft.btitle=Proceedings%20of%20the%20Third%20International%20Conference%20on%20Information%20Fusion&rft.au=Belloir,%20F.&rft.date=2000&rft.volume=1&rft.spage=TUB5/3&rft.epage=TUB5/8%20vol.1&rft.pages=TUB5/3-TUB5/8%20vol.1&rft.isbn=9782725700007&rft.isbn_list=2725700000&rft_id=info:doi/10.1109/IFIC.2000.862672&rft_dat=%3Cieee_6IE%3E862672%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i89t-f215fc045c869f33835e0060fa8e083359e35215e3114df01768c86fab1fa62f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=862672&rfr_iscdi=true