Loading…

HPCVD Thin Film MgB2 for Superconducting Magnetic Shielding

Superconducting magnetic shielding (SMS) is crucial for superconducting electronic devices such as superconducting quantum interference devices (SQUIDs). Current magnetic shielding devices suffer from high construction price, poor mobility, and flexibility. The MgB 2 SMS with cryocooler could be the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on applied superconductivity 2019-08, Vol.29 (5), p.1-4
Main Authors: Cai, Xinwei, Guo, Zhengshan, Yang, Can, Niu, Ruirui, Luo, Wenhao, Huang, Zigeng, Wang, Hongzhang, Feng, Qingrong, Gan, Zizhao
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue 5
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 29
creator Cai, Xinwei
Guo, Zhengshan
Yang, Can
Niu, Ruirui
Luo, Wenhao
Huang, Zigeng
Wang, Hongzhang
Feng, Qingrong
Gan, Zizhao
description Superconducting magnetic shielding (SMS) is crucial for superconducting electronic devices such as superconducting quantum interference devices (SQUIDs). Current magnetic shielding devices suffer from high construction price, poor mobility, and flexibility. The MgB 2 SMS with cryocooler could be the potential the solution. In this work, a hybrid physical-chemical vapor deposition system, which is capable of depositing on a long cylindrical surface, is demonstrated. A dense and robust MgB 2 film has successfully been deposited on the inside wall of a Φ50 × 120 mm 304 stainless steel tube. A microscopic image indicated that the deposited MgB 2 showed a dendritic structure with cracks on it. Sample with different B 2 H 6 flow rates has been made, current result showed a better performance with higher B 2 H 6 flow rate. However, safety issue should be taken into consideration as we further increase the B 2 H 6 concentration. The sample deposited with 10 sccm 25% B 2 H 6 showed the best performance so far with a T C of 34.4 K. A SQUID testing system specifically for high-temperature SQUID with MgB 2 SMS with a liquid-helium-free cryogenic system has been design and under construction for the future researches.
doi_str_mv 10.1109/TASC.2019.2895617
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8627377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8627377</ieee_id><sourcerecordid>2180051300</sourcerecordid><originalsourceid>FETCH-LOGICAL-i133t-348f787a47659b47884c5cb139c4612ec7a08e3aad5e5e96f34cc3e7a9ce64a13</originalsourceid><addsrcrecordid>eNotj01Lw0AYhBdRsFZ_gHhZ8Jy6735kd_FUU2uFFoVEr2G7fdNuaZO6SQ7-ewP1NMPwMMMQcg9sAsDsUzHNswlnYCfcWJWCviAjUMokXIG6HDxTkBjOxTW5ads9YyCNVCPyvPjMvme02IWazsPhSFfbF06rJtK8P2H0Tb3pfRfqLV25bY1d8DTfBTxshuiWXFXu0OLdv47J1_y1yBbJ8uPtPZsukwBCdImQptJGO6lTZddSGyO98msQ1ssUOHrtmEHh3EahQptWQnovUDvrMZUOxJg8nntPsfnpse3KfdPHepgsORg2PBOMDdTDmQqIWJ5iOLr4W5qUa6G1-AOMSlEj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2180051300</pqid></control><display><type>article</type><title>HPCVD Thin Film MgB2 for Superconducting Magnetic Shielding</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Cai, Xinwei ; Guo, Zhengshan ; Yang, Can ; Niu, Ruirui ; Luo, Wenhao ; Huang, Zigeng ; Wang, Hongzhang ; Feng, Qingrong ; Gan, Zizhao</creator><creatorcontrib>Cai, Xinwei ; Guo, Zhengshan ; Yang, Can ; Niu, Ruirui ; Luo, Wenhao ; Huang, Zigeng ; Wang, Hongzhang ; Feng, Qingrong ; Gan, Zizhao</creatorcontrib><description>Superconducting magnetic shielding (SMS) is crucial for superconducting electronic devices such as superconducting quantum interference devices (SQUIDs). Current magnetic shielding devices suffer from high construction price, poor mobility, and flexibility. The MgB 2 SMS with cryocooler could be the potential the solution. In this work, a hybrid physical-chemical vapor deposition system, which is capable of depositing on a long cylindrical surface, is demonstrated. A dense and robust MgB 2 film has successfully been deposited on the inside wall of a Φ50 × 120 mm 304 stainless steel tube. A microscopic image indicated that the deposited MgB 2 showed a dendritic structure with cracks on it. Sample with different B 2 H 6 flow rates has been made, current result showed a better performance with higher B 2 H 6 flow rate. However, safety issue should be taken into consideration as we further increase the B 2 H 6 concentration. The sample deposited with 10 sccm 25% B 2 H 6 showed the best performance so far with a T C of 34.4 K. A SQUID testing system specifically for high-temperature SQUID with MgB 2 SMS with a liquid-helium-free cryogenic system has been design and under construction for the future researches.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2019.2895617</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Austenitic stainless steels ; Borides ; Chemical vapor deposition ; Cracks ; Cryogenic equipment ; Dendritic structure ; Electron microscopes ; Electron tubes ; Electronic devices ; Flow velocity ; Heating systems ; Helium ; High temperature ; High-temperature superconductors ; hybrid physical-chemical vapor deposition ; Magnesium compounds ; Magnesium diboride ; Magnetic shielding ; Organic chemistry ; Physical vapor deposition ; SQUIDs ; superconducting magnetic shielding ; Superconducting quantum interference devices ; Superconductivity ; Surface treatment ; Testing ; Thin films</subject><ispartof>IEEE transactions on applied superconductivity, 2019-08, Vol.29 (5), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2008-0661</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8627377$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Cai, Xinwei</creatorcontrib><creatorcontrib>Guo, Zhengshan</creatorcontrib><creatorcontrib>Yang, Can</creatorcontrib><creatorcontrib>Niu, Ruirui</creatorcontrib><creatorcontrib>Luo, Wenhao</creatorcontrib><creatorcontrib>Huang, Zigeng</creatorcontrib><creatorcontrib>Wang, Hongzhang</creatorcontrib><creatorcontrib>Feng, Qingrong</creatorcontrib><creatorcontrib>Gan, Zizhao</creatorcontrib><title>HPCVD Thin Film MgB2 for Superconducting Magnetic Shielding</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Superconducting magnetic shielding (SMS) is crucial for superconducting electronic devices such as superconducting quantum interference devices (SQUIDs). Current magnetic shielding devices suffer from high construction price, poor mobility, and flexibility. The MgB 2 SMS with cryocooler could be the potential the solution. In this work, a hybrid physical-chemical vapor deposition system, which is capable of depositing on a long cylindrical surface, is demonstrated. A dense and robust MgB 2 film has successfully been deposited on the inside wall of a Φ50 × 120 mm 304 stainless steel tube. A microscopic image indicated that the deposited MgB 2 showed a dendritic structure with cracks on it. Sample with different B 2 H 6 flow rates has been made, current result showed a better performance with higher B 2 H 6 flow rate. However, safety issue should be taken into consideration as we further increase the B 2 H 6 concentration. The sample deposited with 10 sccm 25% B 2 H 6 showed the best performance so far with a T C of 34.4 K. A SQUID testing system specifically for high-temperature SQUID with MgB 2 SMS with a liquid-helium-free cryogenic system has been design and under construction for the future researches.</description><subject>Austenitic stainless steels</subject><subject>Borides</subject><subject>Chemical vapor deposition</subject><subject>Cracks</subject><subject>Cryogenic equipment</subject><subject>Dendritic structure</subject><subject>Electron microscopes</subject><subject>Electron tubes</subject><subject>Electronic devices</subject><subject>Flow velocity</subject><subject>Heating systems</subject><subject>Helium</subject><subject>High temperature</subject><subject>High-temperature superconductors</subject><subject>hybrid physical-chemical vapor deposition</subject><subject>Magnesium compounds</subject><subject>Magnesium diboride</subject><subject>Magnetic shielding</subject><subject>Organic chemistry</subject><subject>Physical vapor deposition</subject><subject>SQUIDs</subject><subject>superconducting magnetic shielding</subject><subject>Superconducting quantum interference devices</subject><subject>Superconductivity</subject><subject>Surface treatment</subject><subject>Testing</subject><subject>Thin films</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotj01Lw0AYhBdRsFZ_gHhZ8Jy6735kd_FUU2uFFoVEr2G7fdNuaZO6SQ7-ewP1NMPwMMMQcg9sAsDsUzHNswlnYCfcWJWCviAjUMokXIG6HDxTkBjOxTW5ads9YyCNVCPyvPjMvme02IWazsPhSFfbF06rJtK8P2H0Tb3pfRfqLV25bY1d8DTfBTxshuiWXFXu0OLdv47J1_y1yBbJ8uPtPZsukwBCdImQptJGO6lTZddSGyO98msQ1ssUOHrtmEHh3EahQptWQnovUDvrMZUOxJg8nntPsfnpse3KfdPHepgsORg2PBOMDdTDmQqIWJ5iOLr4W5qUa6G1-AOMSlEj</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Cai, Xinwei</creator><creator>Guo, Zhengshan</creator><creator>Yang, Can</creator><creator>Niu, Ruirui</creator><creator>Luo, Wenhao</creator><creator>Huang, Zigeng</creator><creator>Wang, Hongzhang</creator><creator>Feng, Qingrong</creator><creator>Gan, Zizhao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2008-0661</orcidid></search><sort><creationdate>20190801</creationdate><title>HPCVD Thin Film MgB2 for Superconducting Magnetic Shielding</title><author>Cai, Xinwei ; Guo, Zhengshan ; Yang, Can ; Niu, Ruirui ; Luo, Wenhao ; Huang, Zigeng ; Wang, Hongzhang ; Feng, Qingrong ; Gan, Zizhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i133t-348f787a47659b47884c5cb139c4612ec7a08e3aad5e5e96f34cc3e7a9ce64a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Austenitic stainless steels</topic><topic>Borides</topic><topic>Chemical vapor deposition</topic><topic>Cracks</topic><topic>Cryogenic equipment</topic><topic>Dendritic structure</topic><topic>Electron microscopes</topic><topic>Electron tubes</topic><topic>Electronic devices</topic><topic>Flow velocity</topic><topic>Heating systems</topic><topic>Helium</topic><topic>High temperature</topic><topic>High-temperature superconductors</topic><topic>hybrid physical-chemical vapor deposition</topic><topic>Magnesium compounds</topic><topic>Magnesium diboride</topic><topic>Magnetic shielding</topic><topic>Organic chemistry</topic><topic>Physical vapor deposition</topic><topic>SQUIDs</topic><topic>superconducting magnetic shielding</topic><topic>Superconducting quantum interference devices</topic><topic>Superconductivity</topic><topic>Surface treatment</topic><topic>Testing</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Xinwei</creatorcontrib><creatorcontrib>Guo, Zhengshan</creatorcontrib><creatorcontrib>Yang, Can</creatorcontrib><creatorcontrib>Niu, Ruirui</creatorcontrib><creatorcontrib>Luo, Wenhao</creatorcontrib><creatorcontrib>Huang, Zigeng</creatorcontrib><creatorcontrib>Wang, Hongzhang</creatorcontrib><creatorcontrib>Feng, Qingrong</creatorcontrib><creatorcontrib>Gan, Zizhao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Xinwei</au><au>Guo, Zhengshan</au><au>Yang, Can</au><au>Niu, Ruirui</au><au>Luo, Wenhao</au><au>Huang, Zigeng</au><au>Wang, Hongzhang</au><au>Feng, Qingrong</au><au>Gan, Zizhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HPCVD Thin Film MgB2 for Superconducting Magnetic Shielding</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>29</volume><issue>5</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Superconducting magnetic shielding (SMS) is crucial for superconducting electronic devices such as superconducting quantum interference devices (SQUIDs). Current magnetic shielding devices suffer from high construction price, poor mobility, and flexibility. The MgB 2 SMS with cryocooler could be the potential the solution. In this work, a hybrid physical-chemical vapor deposition system, which is capable of depositing on a long cylindrical surface, is demonstrated. A dense and robust MgB 2 film has successfully been deposited on the inside wall of a Φ50 × 120 mm 304 stainless steel tube. A microscopic image indicated that the deposited MgB 2 showed a dendritic structure with cracks on it. Sample with different B 2 H 6 flow rates has been made, current result showed a better performance with higher B 2 H 6 flow rate. However, safety issue should be taken into consideration as we further increase the B 2 H 6 concentration. The sample deposited with 10 sccm 25% B 2 H 6 showed the best performance so far with a T C of 34.4 K. A SQUID testing system specifically for high-temperature SQUID with MgB 2 SMS with a liquid-helium-free cryogenic system has been design and under construction for the future researches.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2019.2895617</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-2008-0661</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2019-08, Vol.29 (5), p.1-4
issn 1051-8223
1558-2515
language eng
recordid cdi_ieee_primary_8627377
source IEEE Electronic Library (IEL) Journals
subjects Austenitic stainless steels
Borides
Chemical vapor deposition
Cracks
Cryogenic equipment
Dendritic structure
Electron microscopes
Electron tubes
Electronic devices
Flow velocity
Heating systems
Helium
High temperature
High-temperature superconductors
hybrid physical-chemical vapor deposition
Magnesium compounds
Magnesium diboride
Magnetic shielding
Organic chemistry
Physical vapor deposition
SQUIDs
superconducting magnetic shielding
Superconducting quantum interference devices
Superconductivity
Surface treatment
Testing
Thin films
title HPCVD Thin Film MgB2 for Superconducting Magnetic Shielding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A01%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HPCVD%20Thin%20Film%20MgB2%20for%20Superconducting%20Magnetic%20Shielding&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Cai,%20Xinwei&rft.date=2019-08-01&rft.volume=29&rft.issue=5&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2019.2895617&rft_dat=%3Cproquest_ieee_%3E2180051300%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i133t-348f787a47659b47884c5cb139c4612ec7a08e3aad5e5e96f34cc3e7a9ce64a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2180051300&rft_id=info:pmid/&rft_ieee_id=8627377&rfr_iscdi=true