Loading…
HPCVD Thin Film MgB2 for Superconducting Magnetic Shielding
Superconducting magnetic shielding (SMS) is crucial for superconducting electronic devices such as superconducting quantum interference devices (SQUIDs). Current magnetic shielding devices suffer from high construction price, poor mobility, and flexibility. The MgB 2 SMS with cryocooler could be the...
Saved in:
Published in: | IEEE transactions on applied superconductivity 2019-08, Vol.29 (5), p.1-4 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4 |
container_issue | 5 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 29 |
creator | Cai, Xinwei Guo, Zhengshan Yang, Can Niu, Ruirui Luo, Wenhao Huang, Zigeng Wang, Hongzhang Feng, Qingrong Gan, Zizhao |
description | Superconducting magnetic shielding (SMS) is crucial for superconducting electronic devices such as superconducting quantum interference devices (SQUIDs). Current magnetic shielding devices suffer from high construction price, poor mobility, and flexibility. The MgB 2 SMS with cryocooler could be the potential the solution. In this work, a hybrid physical-chemical vapor deposition system, which is capable of depositing on a long cylindrical surface, is demonstrated. A dense and robust MgB 2 film has successfully been deposited on the inside wall of a Φ50 × 120 mm 304 stainless steel tube. A microscopic image indicated that the deposited MgB 2 showed a dendritic structure with cracks on it. Sample with different B 2 H 6 flow rates has been made, current result showed a better performance with higher B 2 H 6 flow rate. However, safety issue should be taken into consideration as we further increase the B 2 H 6 concentration. The sample deposited with 10 sccm 25% B 2 H 6 showed the best performance so far with a T C of 34.4 K. A SQUID testing system specifically for high-temperature SQUID with MgB 2 SMS with a liquid-helium-free cryogenic system has been design and under construction for the future researches. |
doi_str_mv | 10.1109/TASC.2019.2895617 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8627377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8627377</ieee_id><sourcerecordid>2180051300</sourcerecordid><originalsourceid>FETCH-LOGICAL-i133t-348f787a47659b47884c5cb139c4612ec7a08e3aad5e5e96f34cc3e7a9ce64a13</originalsourceid><addsrcrecordid>eNotj01Lw0AYhBdRsFZ_gHhZ8Jy6735kd_FUU2uFFoVEr2G7fdNuaZO6SQ7-ewP1NMPwMMMQcg9sAsDsUzHNswlnYCfcWJWCviAjUMokXIG6HDxTkBjOxTW5ads9YyCNVCPyvPjMvme02IWazsPhSFfbF06rJtK8P2H0Tb3pfRfqLV25bY1d8DTfBTxshuiWXFXu0OLdv47J1_y1yBbJ8uPtPZsukwBCdImQptJGO6lTZddSGyO98msQ1ssUOHrtmEHh3EahQptWQnovUDvrMZUOxJg8nntPsfnpse3KfdPHepgsORg2PBOMDdTDmQqIWJ5iOLr4W5qUa6G1-AOMSlEj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2180051300</pqid></control><display><type>article</type><title>HPCVD Thin Film MgB2 for Superconducting Magnetic Shielding</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Cai, Xinwei ; Guo, Zhengshan ; Yang, Can ; Niu, Ruirui ; Luo, Wenhao ; Huang, Zigeng ; Wang, Hongzhang ; Feng, Qingrong ; Gan, Zizhao</creator><creatorcontrib>Cai, Xinwei ; Guo, Zhengshan ; Yang, Can ; Niu, Ruirui ; Luo, Wenhao ; Huang, Zigeng ; Wang, Hongzhang ; Feng, Qingrong ; Gan, Zizhao</creatorcontrib><description>Superconducting magnetic shielding (SMS) is crucial for superconducting electronic devices such as superconducting quantum interference devices (SQUIDs). Current magnetic shielding devices suffer from high construction price, poor mobility, and flexibility. The MgB 2 SMS with cryocooler could be the potential the solution. In this work, a hybrid physical-chemical vapor deposition system, which is capable of depositing on a long cylindrical surface, is demonstrated. A dense and robust MgB 2 film has successfully been deposited on the inside wall of a Φ50 × 120 mm 304 stainless steel tube. A microscopic image indicated that the deposited MgB 2 showed a dendritic structure with cracks on it. Sample with different B 2 H 6 flow rates has been made, current result showed a better performance with higher B 2 H 6 flow rate. However, safety issue should be taken into consideration as we further increase the B 2 H 6 concentration. The sample deposited with 10 sccm 25% B 2 H 6 showed the best performance so far with a T C of 34.4 K. A SQUID testing system specifically for high-temperature SQUID with MgB 2 SMS with a liquid-helium-free cryogenic system has been design and under construction for the future researches.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2019.2895617</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Austenitic stainless steels ; Borides ; Chemical vapor deposition ; Cracks ; Cryogenic equipment ; Dendritic structure ; Electron microscopes ; Electron tubes ; Electronic devices ; Flow velocity ; Heating systems ; Helium ; High temperature ; High-temperature superconductors ; hybrid physical-chemical vapor deposition ; Magnesium compounds ; Magnesium diboride ; Magnetic shielding ; Organic chemistry ; Physical vapor deposition ; SQUIDs ; superconducting magnetic shielding ; Superconducting quantum interference devices ; Superconductivity ; Surface treatment ; Testing ; Thin films</subject><ispartof>IEEE transactions on applied superconductivity, 2019-08, Vol.29 (5), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2008-0661</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8627377$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Cai, Xinwei</creatorcontrib><creatorcontrib>Guo, Zhengshan</creatorcontrib><creatorcontrib>Yang, Can</creatorcontrib><creatorcontrib>Niu, Ruirui</creatorcontrib><creatorcontrib>Luo, Wenhao</creatorcontrib><creatorcontrib>Huang, Zigeng</creatorcontrib><creatorcontrib>Wang, Hongzhang</creatorcontrib><creatorcontrib>Feng, Qingrong</creatorcontrib><creatorcontrib>Gan, Zizhao</creatorcontrib><title>HPCVD Thin Film MgB2 for Superconducting Magnetic Shielding</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Superconducting magnetic shielding (SMS) is crucial for superconducting electronic devices such as superconducting quantum interference devices (SQUIDs). Current magnetic shielding devices suffer from high construction price, poor mobility, and flexibility. The MgB 2 SMS with cryocooler could be the potential the solution. In this work, a hybrid physical-chemical vapor deposition system, which is capable of depositing on a long cylindrical surface, is demonstrated. A dense and robust MgB 2 film has successfully been deposited on the inside wall of a Φ50 × 120 mm 304 stainless steel tube. A microscopic image indicated that the deposited MgB 2 showed a dendritic structure with cracks on it. Sample with different B 2 H 6 flow rates has been made, current result showed a better performance with higher B 2 H 6 flow rate. However, safety issue should be taken into consideration as we further increase the B 2 H 6 concentration. The sample deposited with 10 sccm 25% B 2 H 6 showed the best performance so far with a T C of 34.4 K. A SQUID testing system specifically for high-temperature SQUID with MgB 2 SMS with a liquid-helium-free cryogenic system has been design and under construction for the future researches.</description><subject>Austenitic stainless steels</subject><subject>Borides</subject><subject>Chemical vapor deposition</subject><subject>Cracks</subject><subject>Cryogenic equipment</subject><subject>Dendritic structure</subject><subject>Electron microscopes</subject><subject>Electron tubes</subject><subject>Electronic devices</subject><subject>Flow velocity</subject><subject>Heating systems</subject><subject>Helium</subject><subject>High temperature</subject><subject>High-temperature superconductors</subject><subject>hybrid physical-chemical vapor deposition</subject><subject>Magnesium compounds</subject><subject>Magnesium diboride</subject><subject>Magnetic shielding</subject><subject>Organic chemistry</subject><subject>Physical vapor deposition</subject><subject>SQUIDs</subject><subject>superconducting magnetic shielding</subject><subject>Superconducting quantum interference devices</subject><subject>Superconductivity</subject><subject>Surface treatment</subject><subject>Testing</subject><subject>Thin films</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotj01Lw0AYhBdRsFZ_gHhZ8Jy6735kd_FUU2uFFoVEr2G7fdNuaZO6SQ7-ewP1NMPwMMMQcg9sAsDsUzHNswlnYCfcWJWCviAjUMokXIG6HDxTkBjOxTW5ads9YyCNVCPyvPjMvme02IWazsPhSFfbF06rJtK8P2H0Tb3pfRfqLV25bY1d8DTfBTxshuiWXFXu0OLdv47J1_y1yBbJ8uPtPZsukwBCdImQptJGO6lTZddSGyO98msQ1ssUOHrtmEHh3EahQptWQnovUDvrMZUOxJg8nntPsfnpse3KfdPHepgsORg2PBOMDdTDmQqIWJ5iOLr4W5qUa6G1-AOMSlEj</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Cai, Xinwei</creator><creator>Guo, Zhengshan</creator><creator>Yang, Can</creator><creator>Niu, Ruirui</creator><creator>Luo, Wenhao</creator><creator>Huang, Zigeng</creator><creator>Wang, Hongzhang</creator><creator>Feng, Qingrong</creator><creator>Gan, Zizhao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2008-0661</orcidid></search><sort><creationdate>20190801</creationdate><title>HPCVD Thin Film MgB2 for Superconducting Magnetic Shielding</title><author>Cai, Xinwei ; Guo, Zhengshan ; Yang, Can ; Niu, Ruirui ; Luo, Wenhao ; Huang, Zigeng ; Wang, Hongzhang ; Feng, Qingrong ; Gan, Zizhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i133t-348f787a47659b47884c5cb139c4612ec7a08e3aad5e5e96f34cc3e7a9ce64a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Austenitic stainless steels</topic><topic>Borides</topic><topic>Chemical vapor deposition</topic><topic>Cracks</topic><topic>Cryogenic equipment</topic><topic>Dendritic structure</topic><topic>Electron microscopes</topic><topic>Electron tubes</topic><topic>Electronic devices</topic><topic>Flow velocity</topic><topic>Heating systems</topic><topic>Helium</topic><topic>High temperature</topic><topic>High-temperature superconductors</topic><topic>hybrid physical-chemical vapor deposition</topic><topic>Magnesium compounds</topic><topic>Magnesium diboride</topic><topic>Magnetic shielding</topic><topic>Organic chemistry</topic><topic>Physical vapor deposition</topic><topic>SQUIDs</topic><topic>superconducting magnetic shielding</topic><topic>Superconducting quantum interference devices</topic><topic>Superconductivity</topic><topic>Surface treatment</topic><topic>Testing</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Xinwei</creatorcontrib><creatorcontrib>Guo, Zhengshan</creatorcontrib><creatorcontrib>Yang, Can</creatorcontrib><creatorcontrib>Niu, Ruirui</creatorcontrib><creatorcontrib>Luo, Wenhao</creatorcontrib><creatorcontrib>Huang, Zigeng</creatorcontrib><creatorcontrib>Wang, Hongzhang</creatorcontrib><creatorcontrib>Feng, Qingrong</creatorcontrib><creatorcontrib>Gan, Zizhao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Xinwei</au><au>Guo, Zhengshan</au><au>Yang, Can</au><au>Niu, Ruirui</au><au>Luo, Wenhao</au><au>Huang, Zigeng</au><au>Wang, Hongzhang</au><au>Feng, Qingrong</au><au>Gan, Zizhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HPCVD Thin Film MgB2 for Superconducting Magnetic Shielding</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>29</volume><issue>5</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Superconducting magnetic shielding (SMS) is crucial for superconducting electronic devices such as superconducting quantum interference devices (SQUIDs). Current magnetic shielding devices suffer from high construction price, poor mobility, and flexibility. The MgB 2 SMS with cryocooler could be the potential the solution. In this work, a hybrid physical-chemical vapor deposition system, which is capable of depositing on a long cylindrical surface, is demonstrated. A dense and robust MgB 2 film has successfully been deposited on the inside wall of a Φ50 × 120 mm 304 stainless steel tube. A microscopic image indicated that the deposited MgB 2 showed a dendritic structure with cracks on it. Sample with different B 2 H 6 flow rates has been made, current result showed a better performance with higher B 2 H 6 flow rate. However, safety issue should be taken into consideration as we further increase the B 2 H 6 concentration. The sample deposited with 10 sccm 25% B 2 H 6 showed the best performance so far with a T C of 34.4 K. A SQUID testing system specifically for high-temperature SQUID with MgB 2 SMS with a liquid-helium-free cryogenic system has been design and under construction for the future researches.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2019.2895617</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-2008-0661</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2019-08, Vol.29 (5), p.1-4 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_ieee_primary_8627377 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Austenitic stainless steels Borides Chemical vapor deposition Cracks Cryogenic equipment Dendritic structure Electron microscopes Electron tubes Electronic devices Flow velocity Heating systems Helium High temperature High-temperature superconductors hybrid physical-chemical vapor deposition Magnesium compounds Magnesium diboride Magnetic shielding Organic chemistry Physical vapor deposition SQUIDs superconducting magnetic shielding Superconducting quantum interference devices Superconductivity Surface treatment Testing Thin films |
title | HPCVD Thin Film MgB2 for Superconducting Magnetic Shielding |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A01%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HPCVD%20Thin%20Film%20MgB2%20for%20Superconducting%20Magnetic%20Shielding&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Cai,%20Xinwei&rft.date=2019-08-01&rft.volume=29&rft.issue=5&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2019.2895617&rft_dat=%3Cproquest_ieee_%3E2180051300%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i133t-348f787a47659b47884c5cb139c4612ec7a08e3aad5e5e96f34cc3e7a9ce64a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2180051300&rft_id=info:pmid/&rft_ieee_id=8627377&rfr_iscdi=true |