Loading…
Reinforcement Learning for HEVC/H.265 Frame-level Bit Allocation
Frame-level bit allocation is crucial to video rate control. The problem is often cast as minimizing the distortions of a group of video frames subjective to a rate constraint. When these video frames are related through inter-frame prediction, the bit allocation for different frames exhibits depend...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Chen, Lian-Ching Hu, Jun-Hao Peng, Wen-Hsiao |
description | Frame-level bit allocation is crucial to video rate control. The problem is often cast as minimizing the distortions of a group of video frames subjective to a rate constraint. When these video frames are related through inter-frame prediction, the bit allocation for different frames exhibits dependency. To address such dependency, this paper introduces reinforcement learning. We first consider frame-level texture complexity and bit balance as a state signal, define the bit allocation for each frame as an action, and compute the negative frame-level distortion as an immediate reward signal. We then train a neural network to be our agent, which observes the state to allocate bits to each frame in order to maximize cumulative reward. As compared to the rate control scheme in HM-16.15, our method shows better PSNR performance while having smaller bit rate fluctuations. |
doi_str_mv | 10.1109/ICDSP.2018.8631541 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8631541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8631541</ieee_id><sourcerecordid>8631541</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7b7faa2f343a6025d2187da0f1195440a5a6b1470ef0eb7cbd40626eb67c3843</originalsourceid><addsrcrecordid>eNotj8tKw0AUQEdBsNb-gG7mB5LeO-_srLE1hYCixW2ZJHdkJA9JguDfW7CrA2dx4DB2h5AiQrbe50_vr6kAdKkzErXCC7bKrEMtnTEOUV-yhUCjE6mtvWY30_QFoCVmuGAPbxT7MIw1ddTPvCQ_9rH_5CfFi-1Hvi5SYTTfjb6jpKUfavljnPmmbYfaz3Hob9lV8O1EqzOX7LDbHvIiKV-e9_mmTCJaPSe2ssF7EaSS3oDQjUBnGw8BMdNKgdfeVKgsUACqbF01CowwVBlbS6fkkt3_ZyMRHb_H2Pnx93j-lX_C9UeI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reinforcement Learning for HEVC/H.265 Frame-level Bit Allocation</title><source>IEEE Xplore All Conference Series</source><creator>Chen, Lian-Ching ; Hu, Jun-Hao ; Peng, Wen-Hsiao</creator><creatorcontrib>Chen, Lian-Ching ; Hu, Jun-Hao ; Peng, Wen-Hsiao</creatorcontrib><description>Frame-level bit allocation is crucial to video rate control. The problem is often cast as minimizing the distortions of a group of video frames subjective to a rate constraint. When these video frames are related through inter-frame prediction, the bit allocation for different frames exhibits dependency. To address such dependency, this paper introduces reinforcement learning. We first consider frame-level texture complexity and bit balance as a state signal, define the bit allocation for each frame as an action, and compute the negative frame-level distortion as an immediate reward signal. We then train a neural network to be our agent, which observes the state to allocate bits to each frame in order to maximize cumulative reward. As compared to the rate control scheme in HM-16.15, our method shows better PSNR performance while having smaller bit rate fluctuations.</description><identifier>EISSN: 2165-3577</identifier><identifier>EISBN: 9781538668115</identifier><identifier>EISBN: 1538668114</identifier><identifier>DOI: 10.1109/ICDSP.2018.8631541</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bit rate ; Complexity theory ; deep reinforcement learning ; Distortion ; Encoding ; Feature extraction ; frame-level bit allocation ; HEVC/H.265 ; Reinforcement learning ; Training</subject><ispartof>2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), 2018, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8631541$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8631541$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Lian-Ching</creatorcontrib><creatorcontrib>Hu, Jun-Hao</creatorcontrib><creatorcontrib>Peng, Wen-Hsiao</creatorcontrib><title>Reinforcement Learning for HEVC/H.265 Frame-level Bit Allocation</title><title>2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)</title><addtitle>ICDSP</addtitle><description>Frame-level bit allocation is crucial to video rate control. The problem is often cast as minimizing the distortions of a group of video frames subjective to a rate constraint. When these video frames are related through inter-frame prediction, the bit allocation for different frames exhibits dependency. To address such dependency, this paper introduces reinforcement learning. We first consider frame-level texture complexity and bit balance as a state signal, define the bit allocation for each frame as an action, and compute the negative frame-level distortion as an immediate reward signal. We then train a neural network to be our agent, which observes the state to allocate bits to each frame in order to maximize cumulative reward. As compared to the rate control scheme in HM-16.15, our method shows better PSNR performance while having smaller bit rate fluctuations.</description><subject>Bit rate</subject><subject>Complexity theory</subject><subject>deep reinforcement learning</subject><subject>Distortion</subject><subject>Encoding</subject><subject>Feature extraction</subject><subject>frame-level bit allocation</subject><subject>HEVC/H.265</subject><subject>Reinforcement learning</subject><subject>Training</subject><issn>2165-3577</issn><isbn>9781538668115</isbn><isbn>1538668114</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKw0AUQEdBsNb-gG7mB5LeO-_srLE1hYCixW2ZJHdkJA9JguDfW7CrA2dx4DB2h5AiQrbe50_vr6kAdKkzErXCC7bKrEMtnTEOUV-yhUCjE6mtvWY30_QFoCVmuGAPbxT7MIw1ddTPvCQ_9rH_5CfFi-1Hvi5SYTTfjb6jpKUfavljnPmmbYfaz3Hob9lV8O1EqzOX7LDbHvIiKV-e9_mmTCJaPSe2ssF7EaSS3oDQjUBnGw8BMdNKgdfeVKgsUACqbF01CowwVBlbS6fkkt3_ZyMRHb_H2Pnx93j-lX_C9UeI</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Chen, Lian-Ching</creator><creator>Hu, Jun-Hao</creator><creator>Peng, Wen-Hsiao</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201811</creationdate><title>Reinforcement Learning for HEVC/H.265 Frame-level Bit Allocation</title><author>Chen, Lian-Ching ; Hu, Jun-Hao ; Peng, Wen-Hsiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7b7faa2f343a6025d2187da0f1195440a5a6b1470ef0eb7cbd40626eb67c3843</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bit rate</topic><topic>Complexity theory</topic><topic>deep reinforcement learning</topic><topic>Distortion</topic><topic>Encoding</topic><topic>Feature extraction</topic><topic>frame-level bit allocation</topic><topic>HEVC/H.265</topic><topic>Reinforcement learning</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lian-Ching</creatorcontrib><creatorcontrib>Hu, Jun-Hao</creatorcontrib><creatorcontrib>Peng, Wen-Hsiao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Lian-Ching</au><au>Hu, Jun-Hao</au><au>Peng, Wen-Hsiao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reinforcement Learning for HEVC/H.265 Frame-level Bit Allocation</atitle><btitle>2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)</btitle><stitle>ICDSP</stitle><date>2018-11</date><risdate>2018</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2165-3577</eissn><eisbn>9781538668115</eisbn><eisbn>1538668114</eisbn><abstract>Frame-level bit allocation is crucial to video rate control. The problem is often cast as minimizing the distortions of a group of video frames subjective to a rate constraint. When these video frames are related through inter-frame prediction, the bit allocation for different frames exhibits dependency. To address such dependency, this paper introduces reinforcement learning. We first consider frame-level texture complexity and bit balance as a state signal, define the bit allocation for each frame as an action, and compute the negative frame-level distortion as an immediate reward signal. We then train a neural network to be our agent, which observes the state to allocate bits to each frame in order to maximize cumulative reward. As compared to the rate control scheme in HM-16.15, our method shows better PSNR performance while having smaller bit rate fluctuations.</abstract><pub>IEEE</pub><doi>10.1109/ICDSP.2018.8631541</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2165-3577 |
ispartof | 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), 2018, p.1-5 |
issn | 2165-3577 |
language | eng |
recordid | cdi_ieee_primary_8631541 |
source | IEEE Xplore All Conference Series |
subjects | Bit rate Complexity theory deep reinforcement learning Distortion Encoding Feature extraction frame-level bit allocation HEVC/H.265 Reinforcement learning Training |
title | Reinforcement Learning for HEVC/H.265 Frame-level Bit Allocation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reinforcement%20Learning%20for%20HEVC/H.265%20Frame-level%20Bit%20Allocation&rft.btitle=2018%20IEEE%2023rd%20International%20Conference%20on%20Digital%20Signal%20Processing%20(DSP)&rft.au=Chen,%20Lian-Ching&rft.date=2018-11&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2165-3577&rft_id=info:doi/10.1109/ICDSP.2018.8631541&rft.eisbn=9781538668115&rft.eisbn_list=1538668114&rft_dat=%3Cieee_CHZPO%3E8631541%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-7b7faa2f343a6025d2187da0f1195440a5a6b1470ef0eb7cbd40626eb67c3843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8631541&rfr_iscdi=true |