Loading…

Reinforcement Learning for HEVC/H.265 Frame-level Bit Allocation

Frame-level bit allocation is crucial to video rate control. The problem is often cast as minimizing the distortions of a group of video frames subjective to a rate constraint. When these video frames are related through inter-frame prediction, the bit allocation for different frames exhibits depend...

Full description

Saved in:
Bibliographic Details
Main Authors: Chen, Lian-Ching, Hu, Jun-Hao, Peng, Wen-Hsiao
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Chen, Lian-Ching
Hu, Jun-Hao
Peng, Wen-Hsiao
description Frame-level bit allocation is crucial to video rate control. The problem is often cast as minimizing the distortions of a group of video frames subjective to a rate constraint. When these video frames are related through inter-frame prediction, the bit allocation for different frames exhibits dependency. To address such dependency, this paper introduces reinforcement learning. We first consider frame-level texture complexity and bit balance as a state signal, define the bit allocation for each frame as an action, and compute the negative frame-level distortion as an immediate reward signal. We then train a neural network to be our agent, which observes the state to allocate bits to each frame in order to maximize cumulative reward. As compared to the rate control scheme in HM-16.15, our method shows better PSNR performance while having smaller bit rate fluctuations.
doi_str_mv 10.1109/ICDSP.2018.8631541
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8631541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8631541</ieee_id><sourcerecordid>8631541</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7b7faa2f343a6025d2187da0f1195440a5a6b1470ef0eb7cbd40626eb67c3843</originalsourceid><addsrcrecordid>eNotj8tKw0AUQEdBsNb-gG7mB5LeO-_srLE1hYCixW2ZJHdkJA9JguDfW7CrA2dx4DB2h5AiQrbe50_vr6kAdKkzErXCC7bKrEMtnTEOUV-yhUCjE6mtvWY30_QFoCVmuGAPbxT7MIw1ddTPvCQ_9rH_5CfFi-1Hvi5SYTTfjb6jpKUfavljnPmmbYfaz3Hob9lV8O1EqzOX7LDbHvIiKV-e9_mmTCJaPSe2ssF7EaSS3oDQjUBnGw8BMdNKgdfeVKgsUACqbF01CowwVBlbS6fkkt3_ZyMRHb_H2Pnx93j-lX_C9UeI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reinforcement Learning for HEVC/H.265 Frame-level Bit Allocation</title><source>IEEE Xplore All Conference Series</source><creator>Chen, Lian-Ching ; Hu, Jun-Hao ; Peng, Wen-Hsiao</creator><creatorcontrib>Chen, Lian-Ching ; Hu, Jun-Hao ; Peng, Wen-Hsiao</creatorcontrib><description>Frame-level bit allocation is crucial to video rate control. The problem is often cast as minimizing the distortions of a group of video frames subjective to a rate constraint. When these video frames are related through inter-frame prediction, the bit allocation for different frames exhibits dependency. To address such dependency, this paper introduces reinforcement learning. We first consider frame-level texture complexity and bit balance as a state signal, define the bit allocation for each frame as an action, and compute the negative frame-level distortion as an immediate reward signal. We then train a neural network to be our agent, which observes the state to allocate bits to each frame in order to maximize cumulative reward. As compared to the rate control scheme in HM-16.15, our method shows better PSNR performance while having smaller bit rate fluctuations.</description><identifier>EISSN: 2165-3577</identifier><identifier>EISBN: 9781538668115</identifier><identifier>EISBN: 1538668114</identifier><identifier>DOI: 10.1109/ICDSP.2018.8631541</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bit rate ; Complexity theory ; deep reinforcement learning ; Distortion ; Encoding ; Feature extraction ; frame-level bit allocation ; HEVC/H.265 ; Reinforcement learning ; Training</subject><ispartof>2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), 2018, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8631541$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8631541$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Lian-Ching</creatorcontrib><creatorcontrib>Hu, Jun-Hao</creatorcontrib><creatorcontrib>Peng, Wen-Hsiao</creatorcontrib><title>Reinforcement Learning for HEVC/H.265 Frame-level Bit Allocation</title><title>2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)</title><addtitle>ICDSP</addtitle><description>Frame-level bit allocation is crucial to video rate control. The problem is often cast as minimizing the distortions of a group of video frames subjective to a rate constraint. When these video frames are related through inter-frame prediction, the bit allocation for different frames exhibits dependency. To address such dependency, this paper introduces reinforcement learning. We first consider frame-level texture complexity and bit balance as a state signal, define the bit allocation for each frame as an action, and compute the negative frame-level distortion as an immediate reward signal. We then train a neural network to be our agent, which observes the state to allocate bits to each frame in order to maximize cumulative reward. As compared to the rate control scheme in HM-16.15, our method shows better PSNR performance while having smaller bit rate fluctuations.</description><subject>Bit rate</subject><subject>Complexity theory</subject><subject>deep reinforcement learning</subject><subject>Distortion</subject><subject>Encoding</subject><subject>Feature extraction</subject><subject>frame-level bit allocation</subject><subject>HEVC/H.265</subject><subject>Reinforcement learning</subject><subject>Training</subject><issn>2165-3577</issn><isbn>9781538668115</isbn><isbn>1538668114</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKw0AUQEdBsNb-gG7mB5LeO-_srLE1hYCixW2ZJHdkJA9JguDfW7CrA2dx4DB2h5AiQrbe50_vr6kAdKkzErXCC7bKrEMtnTEOUV-yhUCjE6mtvWY30_QFoCVmuGAPbxT7MIw1ddTPvCQ_9rH_5CfFi-1Hvi5SYTTfjb6jpKUfavljnPmmbYfaz3Hob9lV8O1EqzOX7LDbHvIiKV-e9_mmTCJaPSe2ssF7EaSS3oDQjUBnGw8BMdNKgdfeVKgsUACqbF01CowwVBlbS6fkkt3_ZyMRHb_H2Pnx93j-lX_C9UeI</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Chen, Lian-Ching</creator><creator>Hu, Jun-Hao</creator><creator>Peng, Wen-Hsiao</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201811</creationdate><title>Reinforcement Learning for HEVC/H.265 Frame-level Bit Allocation</title><author>Chen, Lian-Ching ; Hu, Jun-Hao ; Peng, Wen-Hsiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7b7faa2f343a6025d2187da0f1195440a5a6b1470ef0eb7cbd40626eb67c3843</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bit rate</topic><topic>Complexity theory</topic><topic>deep reinforcement learning</topic><topic>Distortion</topic><topic>Encoding</topic><topic>Feature extraction</topic><topic>frame-level bit allocation</topic><topic>HEVC/H.265</topic><topic>Reinforcement learning</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lian-Ching</creatorcontrib><creatorcontrib>Hu, Jun-Hao</creatorcontrib><creatorcontrib>Peng, Wen-Hsiao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Lian-Ching</au><au>Hu, Jun-Hao</au><au>Peng, Wen-Hsiao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reinforcement Learning for HEVC/H.265 Frame-level Bit Allocation</atitle><btitle>2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)</btitle><stitle>ICDSP</stitle><date>2018-11</date><risdate>2018</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2165-3577</eissn><eisbn>9781538668115</eisbn><eisbn>1538668114</eisbn><abstract>Frame-level bit allocation is crucial to video rate control. The problem is often cast as minimizing the distortions of a group of video frames subjective to a rate constraint. When these video frames are related through inter-frame prediction, the bit allocation for different frames exhibits dependency. To address such dependency, this paper introduces reinforcement learning. We first consider frame-level texture complexity and bit balance as a state signal, define the bit allocation for each frame as an action, and compute the negative frame-level distortion as an immediate reward signal. We then train a neural network to be our agent, which observes the state to allocate bits to each frame in order to maximize cumulative reward. As compared to the rate control scheme in HM-16.15, our method shows better PSNR performance while having smaller bit rate fluctuations.</abstract><pub>IEEE</pub><doi>10.1109/ICDSP.2018.8631541</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2165-3577
ispartof 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), 2018, p.1-5
issn 2165-3577
language eng
recordid cdi_ieee_primary_8631541
source IEEE Xplore All Conference Series
subjects Bit rate
Complexity theory
deep reinforcement learning
Distortion
Encoding
Feature extraction
frame-level bit allocation
HEVC/H.265
Reinforcement learning
Training
title Reinforcement Learning for HEVC/H.265 Frame-level Bit Allocation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reinforcement%20Learning%20for%20HEVC/H.265%20Frame-level%20Bit%20Allocation&rft.btitle=2018%20IEEE%2023rd%20International%20Conference%20on%20Digital%20Signal%20Processing%20(DSP)&rft.au=Chen,%20Lian-Ching&rft.date=2018-11&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2165-3577&rft_id=info:doi/10.1109/ICDSP.2018.8631541&rft.eisbn=9781538668115&rft.eisbn_list=1538668114&rft_dat=%3Cieee_CHZPO%3E8631541%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-7b7faa2f343a6025d2187da0f1195440a5a6b1470ef0eb7cbd40626eb67c3843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8631541&rfr_iscdi=true