Loading…
Cuboid Colour Image Segmentation Using Intuitive Distance Measure
In this paper, an improved algorithm for cuboid image segmentation is proposed. To address the two main limitations of the recently proposed cuboid segmentation algorithm, the improved algorithm substitutes colour quantization in HCL colour space with infinity norm distance in RGB colour space along...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Tania, Sheikh Murshed, Manzur Teng, Shyh Wei Karmakar, Gour |
description | In this paper, an improved algorithm for cuboid image segmentation is proposed. To address the two main limitations of the recently proposed cuboid segmentation algorithm, the improved algorithm substitutes colour quantization in HCL colour space with infinity norm distance in RGB colour space along with a different way to impose area thresholding. We also propose a new metric to evaluate the quality of segmentation. Experimental results show that the proposed cuboid segmentation algorithm significantly outperforms the existing cuboid segmentation algorithm in terms of quality of segmentation. |
doi_str_mv | 10.1109/IVCNZ.2018.8634676 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8634676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8634676</ieee_id><sourcerecordid>8634676</sourcerecordid><originalsourceid>FETCH-LOGICAL-i219t-963aeba669863dd2e0ccbcad90291729446283f8175155b7b9d9db16cec24b1d3</originalsourceid><addsrcrecordid>eNotz8tKxDAYBeAoCA5jX0A3eYHW_GmTJsuh3gqjLnRcuBly-adEpq00qeDbW3BWZ3Hg8B1CroEVAEzfth_Ny2fBGahCybKStTwjma4V1FwBAy7EOVlxEJBzzsQlyWL8YmwplORKrMimme0YPG3G4zhPtO1Nh_QNux6HZFIYB7qLYehoO6Q5pPCD9C7EZAaH9BlNnCe8IhcHc4yYnXJNdg_3781Tvn19bJvNNg8cdMq1LA1aI6VenN5zZM5ZZ7xmXC9YXVULqDwscAFC2Npqr70F6dDxyoIv1-Tmfzcg4v57Cr2Zfven0-UfGplKvA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Cuboid Colour Image Segmentation Using Intuitive Distance Measure</title><source>IEEE Xplore All Conference Series</source><creator>Tania, Sheikh ; Murshed, Manzur ; Teng, Shyh Wei ; Karmakar, Gour</creator><creatorcontrib>Tania, Sheikh ; Murshed, Manzur ; Teng, Shyh Wei ; Karmakar, Gour</creatorcontrib><description>In this paper, an improved algorithm for cuboid image segmentation is proposed. To address the two main limitations of the recently proposed cuboid segmentation algorithm, the improved algorithm substitutes colour quantization in HCL colour space with infinity norm distance in RGB colour space along with a different way to impose area thresholding. We also propose a new metric to evaluate the quality of segmentation. Experimental results show that the proposed cuboid segmentation algorithm significantly outperforms the existing cuboid segmentation algorithm in terms of quality of segmentation.</description><identifier>EISSN: 2151-2205</identifier><identifier>EISBN: 9781728101255</identifier><identifier>EISBN: 1728101255</identifier><identifier>DOI: 10.1109/IVCNZ.2018.8634676</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification algorithms ; Cuboid segmentation ; Image color analysis ; Image retrieval ; Image segmentation ; infinity norm ; Measurement ; Partitioning algorithms ; Quantization (signal) ; segmentation quality metric</subject><ispartof>2018 International Conference on Image and Vision Computing New Zealand (IVCNZ), 2018, p.1-6</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8634676$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8634676$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tania, Sheikh</creatorcontrib><creatorcontrib>Murshed, Manzur</creatorcontrib><creatorcontrib>Teng, Shyh Wei</creatorcontrib><creatorcontrib>Karmakar, Gour</creatorcontrib><title>Cuboid Colour Image Segmentation Using Intuitive Distance Measure</title><title>2018 International Conference on Image and Vision Computing New Zealand (IVCNZ)</title><addtitle>IVCNZ</addtitle><description>In this paper, an improved algorithm for cuboid image segmentation is proposed. To address the two main limitations of the recently proposed cuboid segmentation algorithm, the improved algorithm substitutes colour quantization in HCL colour space with infinity norm distance in RGB colour space along with a different way to impose area thresholding. We also propose a new metric to evaluate the quality of segmentation. Experimental results show that the proposed cuboid segmentation algorithm significantly outperforms the existing cuboid segmentation algorithm in terms of quality of segmentation.</description><subject>Classification algorithms</subject><subject>Cuboid segmentation</subject><subject>Image color analysis</subject><subject>Image retrieval</subject><subject>Image segmentation</subject><subject>infinity norm</subject><subject>Measurement</subject><subject>Partitioning algorithms</subject><subject>Quantization (signal)</subject><subject>segmentation quality metric</subject><issn>2151-2205</issn><isbn>9781728101255</isbn><isbn>1728101255</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotz8tKxDAYBeAoCA5jX0A3eYHW_GmTJsuh3gqjLnRcuBly-adEpq00qeDbW3BWZ3Hg8B1CroEVAEzfth_Ny2fBGahCybKStTwjma4V1FwBAy7EOVlxEJBzzsQlyWL8YmwplORKrMimme0YPG3G4zhPtO1Nh_QNux6HZFIYB7qLYehoO6Q5pPCD9C7EZAaH9BlNnCe8IhcHc4yYnXJNdg_3781Tvn19bJvNNg8cdMq1LA1aI6VenN5zZM5ZZ7xmXC9YXVULqDwscAFC2Npqr70F6dDxyoIv1-Tmfzcg4v57Cr2Zfven0-UfGplKvA</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Tania, Sheikh</creator><creator>Murshed, Manzur</creator><creator>Teng, Shyh Wei</creator><creator>Karmakar, Gour</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201811</creationdate><title>Cuboid Colour Image Segmentation Using Intuitive Distance Measure</title><author>Tania, Sheikh ; Murshed, Manzur ; Teng, Shyh Wei ; Karmakar, Gour</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i219t-963aeba669863dd2e0ccbcad90291729446283f8175155b7b9d9db16cec24b1d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Classification algorithms</topic><topic>Cuboid segmentation</topic><topic>Image color analysis</topic><topic>Image retrieval</topic><topic>Image segmentation</topic><topic>infinity norm</topic><topic>Measurement</topic><topic>Partitioning algorithms</topic><topic>Quantization (signal)</topic><topic>segmentation quality metric</topic><toplevel>online_resources</toplevel><creatorcontrib>Tania, Sheikh</creatorcontrib><creatorcontrib>Murshed, Manzur</creatorcontrib><creatorcontrib>Teng, Shyh Wei</creatorcontrib><creatorcontrib>Karmakar, Gour</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tania, Sheikh</au><au>Murshed, Manzur</au><au>Teng, Shyh Wei</au><au>Karmakar, Gour</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Cuboid Colour Image Segmentation Using Intuitive Distance Measure</atitle><btitle>2018 International Conference on Image and Vision Computing New Zealand (IVCNZ)</btitle><stitle>IVCNZ</stitle><date>2018-11</date><risdate>2018</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2151-2205</eissn><eisbn>9781728101255</eisbn><eisbn>1728101255</eisbn><abstract>In this paper, an improved algorithm for cuboid image segmentation is proposed. To address the two main limitations of the recently proposed cuboid segmentation algorithm, the improved algorithm substitutes colour quantization in HCL colour space with infinity norm distance in RGB colour space along with a different way to impose area thresholding. We also propose a new metric to evaluate the quality of segmentation. Experimental results show that the proposed cuboid segmentation algorithm significantly outperforms the existing cuboid segmentation algorithm in terms of quality of segmentation.</abstract><pub>IEEE</pub><doi>10.1109/IVCNZ.2018.8634676</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2151-2205 |
ispartof | 2018 International Conference on Image and Vision Computing New Zealand (IVCNZ), 2018, p.1-6 |
issn | 2151-2205 |
language | eng |
recordid | cdi_ieee_primary_8634676 |
source | IEEE Xplore All Conference Series |
subjects | Classification algorithms Cuboid segmentation Image color analysis Image retrieval Image segmentation infinity norm Measurement Partitioning algorithms Quantization (signal) segmentation quality metric |
title | Cuboid Colour Image Segmentation Using Intuitive Distance Measure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Cuboid%20Colour%20Image%20Segmentation%20Using%20Intuitive%20Distance%20Measure&rft.btitle=2018%20International%20Conference%20on%20Image%20and%20Vision%20Computing%20New%20Zealand%20(IVCNZ)&rft.au=Tania,%20Sheikh&rft.date=2018-11&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2151-2205&rft_id=info:doi/10.1109/IVCNZ.2018.8634676&rft.eisbn=9781728101255&rft.eisbn_list=1728101255&rft_dat=%3Cieee_CHZPO%3E8634676%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i219t-963aeba669863dd2e0ccbcad90291729446283f8175155b7b9d9db16cec24b1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8634676&rfr_iscdi=true |