Loading…

Cuboid Colour Image Segmentation Using Intuitive Distance Measure

In this paper, an improved algorithm for cuboid image segmentation is proposed. To address the two main limitations of the recently proposed cuboid segmentation algorithm, the improved algorithm substitutes colour quantization in HCL colour space with infinity norm distance in RGB colour space along...

Full description

Saved in:
Bibliographic Details
Main Authors: Tania, Sheikh, Murshed, Manzur, Teng, Shyh Wei, Karmakar, Gour
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Tania, Sheikh
Murshed, Manzur
Teng, Shyh Wei
Karmakar, Gour
description In this paper, an improved algorithm for cuboid image segmentation is proposed. To address the two main limitations of the recently proposed cuboid segmentation algorithm, the improved algorithm substitutes colour quantization in HCL colour space with infinity norm distance in RGB colour space along with a different way to impose area thresholding. We also propose a new metric to evaluate the quality of segmentation. Experimental results show that the proposed cuboid segmentation algorithm significantly outperforms the existing cuboid segmentation algorithm in terms of quality of segmentation.
doi_str_mv 10.1109/IVCNZ.2018.8634676
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8634676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8634676</ieee_id><sourcerecordid>8634676</sourcerecordid><originalsourceid>FETCH-LOGICAL-i219t-963aeba669863dd2e0ccbcad90291729446283f8175155b7b9d9db16cec24b1d3</originalsourceid><addsrcrecordid>eNotz8tKxDAYBeAoCA5jX0A3eYHW_GmTJsuh3gqjLnRcuBly-adEpq00qeDbW3BWZ3Hg8B1CroEVAEzfth_Ny2fBGahCybKStTwjma4V1FwBAy7EOVlxEJBzzsQlyWL8YmwplORKrMimme0YPG3G4zhPtO1Nh_QNux6HZFIYB7qLYehoO6Q5pPCD9C7EZAaH9BlNnCe8IhcHc4yYnXJNdg_3781Tvn19bJvNNg8cdMq1LA1aI6VenN5zZM5ZZ7xmXC9YXVULqDwscAFC2Npqr70F6dDxyoIv1-Tmfzcg4v57Cr2Zfven0-UfGplKvA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Cuboid Colour Image Segmentation Using Intuitive Distance Measure</title><source>IEEE Xplore All Conference Series</source><creator>Tania, Sheikh ; Murshed, Manzur ; Teng, Shyh Wei ; Karmakar, Gour</creator><creatorcontrib>Tania, Sheikh ; Murshed, Manzur ; Teng, Shyh Wei ; Karmakar, Gour</creatorcontrib><description>In this paper, an improved algorithm for cuboid image segmentation is proposed. To address the two main limitations of the recently proposed cuboid segmentation algorithm, the improved algorithm substitutes colour quantization in HCL colour space with infinity norm distance in RGB colour space along with a different way to impose area thresholding. We also propose a new metric to evaluate the quality of segmentation. Experimental results show that the proposed cuboid segmentation algorithm significantly outperforms the existing cuboid segmentation algorithm in terms of quality of segmentation.</description><identifier>EISSN: 2151-2205</identifier><identifier>EISBN: 9781728101255</identifier><identifier>EISBN: 1728101255</identifier><identifier>DOI: 10.1109/IVCNZ.2018.8634676</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification algorithms ; Cuboid segmentation ; Image color analysis ; Image retrieval ; Image segmentation ; infinity norm ; Measurement ; Partitioning algorithms ; Quantization (signal) ; segmentation quality metric</subject><ispartof>2018 International Conference on Image and Vision Computing New Zealand (IVCNZ), 2018, p.1-6</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8634676$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8634676$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tania, Sheikh</creatorcontrib><creatorcontrib>Murshed, Manzur</creatorcontrib><creatorcontrib>Teng, Shyh Wei</creatorcontrib><creatorcontrib>Karmakar, Gour</creatorcontrib><title>Cuboid Colour Image Segmentation Using Intuitive Distance Measure</title><title>2018 International Conference on Image and Vision Computing New Zealand (IVCNZ)</title><addtitle>IVCNZ</addtitle><description>In this paper, an improved algorithm for cuboid image segmentation is proposed. To address the two main limitations of the recently proposed cuboid segmentation algorithm, the improved algorithm substitutes colour quantization in HCL colour space with infinity norm distance in RGB colour space along with a different way to impose area thresholding. We also propose a new metric to evaluate the quality of segmentation. Experimental results show that the proposed cuboid segmentation algorithm significantly outperforms the existing cuboid segmentation algorithm in terms of quality of segmentation.</description><subject>Classification algorithms</subject><subject>Cuboid segmentation</subject><subject>Image color analysis</subject><subject>Image retrieval</subject><subject>Image segmentation</subject><subject>infinity norm</subject><subject>Measurement</subject><subject>Partitioning algorithms</subject><subject>Quantization (signal)</subject><subject>segmentation quality metric</subject><issn>2151-2205</issn><isbn>9781728101255</isbn><isbn>1728101255</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotz8tKxDAYBeAoCA5jX0A3eYHW_GmTJsuh3gqjLnRcuBly-adEpq00qeDbW3BWZ3Hg8B1CroEVAEzfth_Ny2fBGahCybKStTwjma4V1FwBAy7EOVlxEJBzzsQlyWL8YmwplORKrMimme0YPG3G4zhPtO1Nh_QNux6HZFIYB7qLYehoO6Q5pPCD9C7EZAaH9BlNnCe8IhcHc4yYnXJNdg_3781Tvn19bJvNNg8cdMq1LA1aI6VenN5zZM5ZZ7xmXC9YXVULqDwscAFC2Npqr70F6dDxyoIv1-Tmfzcg4v57Cr2Zfven0-UfGplKvA</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Tania, Sheikh</creator><creator>Murshed, Manzur</creator><creator>Teng, Shyh Wei</creator><creator>Karmakar, Gour</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201811</creationdate><title>Cuboid Colour Image Segmentation Using Intuitive Distance Measure</title><author>Tania, Sheikh ; Murshed, Manzur ; Teng, Shyh Wei ; Karmakar, Gour</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i219t-963aeba669863dd2e0ccbcad90291729446283f8175155b7b9d9db16cec24b1d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Classification algorithms</topic><topic>Cuboid segmentation</topic><topic>Image color analysis</topic><topic>Image retrieval</topic><topic>Image segmentation</topic><topic>infinity norm</topic><topic>Measurement</topic><topic>Partitioning algorithms</topic><topic>Quantization (signal)</topic><topic>segmentation quality metric</topic><toplevel>online_resources</toplevel><creatorcontrib>Tania, Sheikh</creatorcontrib><creatorcontrib>Murshed, Manzur</creatorcontrib><creatorcontrib>Teng, Shyh Wei</creatorcontrib><creatorcontrib>Karmakar, Gour</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tania, Sheikh</au><au>Murshed, Manzur</au><au>Teng, Shyh Wei</au><au>Karmakar, Gour</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Cuboid Colour Image Segmentation Using Intuitive Distance Measure</atitle><btitle>2018 International Conference on Image and Vision Computing New Zealand (IVCNZ)</btitle><stitle>IVCNZ</stitle><date>2018-11</date><risdate>2018</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2151-2205</eissn><eisbn>9781728101255</eisbn><eisbn>1728101255</eisbn><abstract>In this paper, an improved algorithm for cuboid image segmentation is proposed. To address the two main limitations of the recently proposed cuboid segmentation algorithm, the improved algorithm substitutes colour quantization in HCL colour space with infinity norm distance in RGB colour space along with a different way to impose area thresholding. We also propose a new metric to evaluate the quality of segmentation. Experimental results show that the proposed cuboid segmentation algorithm significantly outperforms the existing cuboid segmentation algorithm in terms of quality of segmentation.</abstract><pub>IEEE</pub><doi>10.1109/IVCNZ.2018.8634676</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2151-2205
ispartof 2018 International Conference on Image and Vision Computing New Zealand (IVCNZ), 2018, p.1-6
issn 2151-2205
language eng
recordid cdi_ieee_primary_8634676
source IEEE Xplore All Conference Series
subjects Classification algorithms
Cuboid segmentation
Image color analysis
Image retrieval
Image segmentation
infinity norm
Measurement
Partitioning algorithms
Quantization (signal)
segmentation quality metric
title Cuboid Colour Image Segmentation Using Intuitive Distance Measure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Cuboid%20Colour%20Image%20Segmentation%20Using%20Intuitive%20Distance%20Measure&rft.btitle=2018%20International%20Conference%20on%20Image%20and%20Vision%20Computing%20New%20Zealand%20(IVCNZ)&rft.au=Tania,%20Sheikh&rft.date=2018-11&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2151-2205&rft_id=info:doi/10.1109/IVCNZ.2018.8634676&rft.eisbn=9781728101255&rft.eisbn_list=1728101255&rft_dat=%3Cieee_CHZPO%3E8634676%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i219t-963aeba669863dd2e0ccbcad90291729446283f8175155b7b9d9db16cec24b1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8634676&rfr_iscdi=true