Loading…

Game-theoretic Learning-based QoS Satisfaction in Autonomous Mobile Edge Computing

Mobile Edge Computing (MEC) has arisen as an effective computation paradigm to deal with the advanced application requirements in Internet of Things (IOT). In this paper, we treat the joint problem of autonomous MEC servers' operation and mobile devices' QoS satisfaction in a fully distrib...

Full description

Saved in:
Bibliographic Details
Main Authors: Apostolopoulos, Pavlos Athanasios, Tsiropoulou, Eirini Eleni, Papavassiliou, Symeon
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Apostolopoulos, Pavlos Athanasios
Tsiropoulou, Eirini Eleni
Papavassiliou, Symeon
description Mobile Edge Computing (MEC) has arisen as an effective computation paradigm to deal with the advanced application requirements in Internet of Things (IOT). In this paper, we treat the joint problem of autonomous MEC servers' operation and mobile devices' QoS satisfaction in a fully distributed IOT network. The autonomous MEC servers' activation is formulated as a minority game and through a distributed learning algorithm each server determines whether it becomes active or not. The mobile devices acting as stochastic learning automata select in a fully distributed manner an active server to get associated with for computation offloading, while for energy efficiency considerations, a non- cooperative game of satisfaction form among the IOT devices is formulated to determine the transmission power of each device in order to guarantee its QoS satisfaction. The performance evaluation of the proposed framework is achieved via modeling and simulation and detailed numerical and comparative results demonstrate its effectiveness, scalability, and robustness.
doi_str_mv 10.1109/GIIS.2018.8635770
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8635770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8635770</ieee_id><sourcerecordid>8635770</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-a23b3466af11c1c05710289696c9e426898ef1f60a7b123dfd0406454613653</originalsourceid><addsrcrecordid>eNotkLFOwzAUAA0SEqX0AxCLfyDhPTt27LGqShqpCEEY2ConeSlGTVwlzsDfg0Snm-6GY-wBIUUE-1SUZZUKQJMaLVWewxW7QyWNzkUu5DVbCFSQSGE_b9lqmr4BQKIxFtWCvReupyR-URgp-obvyY2DH45J7SZq-VuoeOWinzrXRB8G7ge-nmMYQh_mib-E2p-Ib9sj8U3oz3P8U-_ZTedOE60uXLLqefux2SX716LcrPeJFxnGxAlZy0xr1yE22IDKEYSx2urGUia0sYY67DS4vEYh266FDHSmMo1SK7lkj_9VT0SH8-h7N_4cLgPkLzOXThM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Game-theoretic Learning-based QoS Satisfaction in Autonomous Mobile Edge Computing</title><source>IEEE Xplore All Conference Series</source><creator>Apostolopoulos, Pavlos Athanasios ; Tsiropoulou, Eirini Eleni ; Papavassiliou, Symeon</creator><creatorcontrib>Apostolopoulos, Pavlos Athanasios ; Tsiropoulou, Eirini Eleni ; Papavassiliou, Symeon</creatorcontrib><description>Mobile Edge Computing (MEC) has arisen as an effective computation paradigm to deal with the advanced application requirements in Internet of Things (IOT). In this paper, we treat the joint problem of autonomous MEC servers' operation and mobile devices' QoS satisfaction in a fully distributed IOT network. The autonomous MEC servers' activation is formulated as a minority game and through a distributed learning algorithm each server determines whether it becomes active or not. The mobile devices acting as stochastic learning automata select in a fully distributed manner an active server to get associated with for computation offloading, while for energy efficiency considerations, a non- cooperative game of satisfaction form among the IOT devices is formulated to determine the transmission power of each device in order to guarantee its QoS satisfaction. The performance evaluation of the proposed framework is achieved via modeling and simulation and detailed numerical and comparative results demonstrate its effectiveness, scalability, and robustness.</description><identifier>EISSN: 2150-329X</identifier><identifier>EISBN: 1538672723</identifier><identifier>EISBN: 9781538672723</identifier><identifier>DOI: 10.1109/GIIS.2018.8635770</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational efficiency ; distributed learning ; Edge computing ; energy efficiency ; game theory ; Games ; Internet of Things ; mobile edge computing ; Mobile handsets ; Quality of service ; Satisfaction equilibrium ; Servers</subject><ispartof>2018 Global Information Infrastructure and Networking Symposium (GIIS), 2018, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8635770$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23909,23910,25118,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8635770$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Apostolopoulos, Pavlos Athanasios</creatorcontrib><creatorcontrib>Tsiropoulou, Eirini Eleni</creatorcontrib><creatorcontrib>Papavassiliou, Symeon</creatorcontrib><title>Game-theoretic Learning-based QoS Satisfaction in Autonomous Mobile Edge Computing</title><title>2018 Global Information Infrastructure and Networking Symposium (GIIS)</title><addtitle>GIIS</addtitle><description>Mobile Edge Computing (MEC) has arisen as an effective computation paradigm to deal with the advanced application requirements in Internet of Things (IOT). In this paper, we treat the joint problem of autonomous MEC servers' operation and mobile devices' QoS satisfaction in a fully distributed IOT network. The autonomous MEC servers' activation is formulated as a minority game and through a distributed learning algorithm each server determines whether it becomes active or not. The mobile devices acting as stochastic learning automata select in a fully distributed manner an active server to get associated with for computation offloading, while for energy efficiency considerations, a non- cooperative game of satisfaction form among the IOT devices is formulated to determine the transmission power of each device in order to guarantee its QoS satisfaction. The performance evaluation of the proposed framework is achieved via modeling and simulation and detailed numerical and comparative results demonstrate its effectiveness, scalability, and robustness.</description><subject>Computational efficiency</subject><subject>distributed learning</subject><subject>Edge computing</subject><subject>energy efficiency</subject><subject>game theory</subject><subject>Games</subject><subject>Internet of Things</subject><subject>mobile edge computing</subject><subject>Mobile handsets</subject><subject>Quality of service</subject><subject>Satisfaction equilibrium</subject><subject>Servers</subject><issn>2150-329X</issn><isbn>1538672723</isbn><isbn>9781538672723</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkLFOwzAUAA0SEqX0AxCLfyDhPTt27LGqShqpCEEY2ConeSlGTVwlzsDfg0Snm-6GY-wBIUUE-1SUZZUKQJMaLVWewxW7QyWNzkUu5DVbCFSQSGE_b9lqmr4BQKIxFtWCvReupyR-URgp-obvyY2DH45J7SZq-VuoeOWinzrXRB8G7ge-nmMYQh_mib-E2p-Ib9sj8U3oz3P8U-_ZTedOE60uXLLqefux2SX716LcrPeJFxnGxAlZy0xr1yE22IDKEYSx2urGUia0sYY67DS4vEYh266FDHSmMo1SK7lkj_9VT0SH8-h7N_4cLgPkLzOXThM</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Apostolopoulos, Pavlos Athanasios</creator><creator>Tsiropoulou, Eirini Eleni</creator><creator>Papavassiliou, Symeon</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201810</creationdate><title>Game-theoretic Learning-based QoS Satisfaction in Autonomous Mobile Edge Computing</title><author>Apostolopoulos, Pavlos Athanasios ; Tsiropoulou, Eirini Eleni ; Papavassiliou, Symeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-a23b3466af11c1c05710289696c9e426898ef1f60a7b123dfd0406454613653</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational efficiency</topic><topic>distributed learning</topic><topic>Edge computing</topic><topic>energy efficiency</topic><topic>game theory</topic><topic>Games</topic><topic>Internet of Things</topic><topic>mobile edge computing</topic><topic>Mobile handsets</topic><topic>Quality of service</topic><topic>Satisfaction equilibrium</topic><topic>Servers</topic><toplevel>online_resources</toplevel><creatorcontrib>Apostolopoulos, Pavlos Athanasios</creatorcontrib><creatorcontrib>Tsiropoulou, Eirini Eleni</creatorcontrib><creatorcontrib>Papavassiliou, Symeon</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Apostolopoulos, Pavlos Athanasios</au><au>Tsiropoulou, Eirini Eleni</au><au>Papavassiliou, Symeon</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Game-theoretic Learning-based QoS Satisfaction in Autonomous Mobile Edge Computing</atitle><btitle>2018 Global Information Infrastructure and Networking Symposium (GIIS)</btitle><stitle>GIIS</stitle><date>2018-10</date><risdate>2018</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2150-329X</eissn><eisbn>1538672723</eisbn><eisbn>9781538672723</eisbn><abstract>Mobile Edge Computing (MEC) has arisen as an effective computation paradigm to deal with the advanced application requirements in Internet of Things (IOT). In this paper, we treat the joint problem of autonomous MEC servers' operation and mobile devices' QoS satisfaction in a fully distributed IOT network. The autonomous MEC servers' activation is formulated as a minority game and through a distributed learning algorithm each server determines whether it becomes active or not. The mobile devices acting as stochastic learning automata select in a fully distributed manner an active server to get associated with for computation offloading, while for energy efficiency considerations, a non- cooperative game of satisfaction form among the IOT devices is formulated to determine the transmission power of each device in order to guarantee its QoS satisfaction. The performance evaluation of the proposed framework is achieved via modeling and simulation and detailed numerical and comparative results demonstrate its effectiveness, scalability, and robustness.</abstract><pub>IEEE</pub><doi>10.1109/GIIS.2018.8635770</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2150-329X
ispartof 2018 Global Information Infrastructure and Networking Symposium (GIIS), 2018, p.1-5
issn 2150-329X
language eng
recordid cdi_ieee_primary_8635770
source IEEE Xplore All Conference Series
subjects Computational efficiency
distributed learning
Edge computing
energy efficiency
game theory
Games
Internet of Things
mobile edge computing
Mobile handsets
Quality of service
Satisfaction equilibrium
Servers
title Game-theoretic Learning-based QoS Satisfaction in Autonomous Mobile Edge Computing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A55%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Game-theoretic%20Learning-based%20QoS%20Satisfaction%20in%20Autonomous%20Mobile%20Edge%20Computing&rft.btitle=2018%20Global%20Information%20Infrastructure%20and%20Networking%20Symposium%20(GIIS)&rft.au=Apostolopoulos,%20Pavlos%20Athanasios&rft.date=2018-10&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2150-329X&rft_id=info:doi/10.1109/GIIS.2018.8635770&rft.eisbn=1538672723&rft.eisbn_list=9781538672723&rft_dat=%3Cieee_CHZPO%3E8635770%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i241t-a23b3466af11c1c05710289696c9e426898ef1f60a7b123dfd0406454613653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8635770&rfr_iscdi=true