Loading…
Game-theoretic Learning-based QoS Satisfaction in Autonomous Mobile Edge Computing
Mobile Edge Computing (MEC) has arisen as an effective computation paradigm to deal with the advanced application requirements in Internet of Things (IOT). In this paper, we treat the joint problem of autonomous MEC servers' operation and mobile devices' QoS satisfaction in a fully distrib...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Apostolopoulos, Pavlos Athanasios Tsiropoulou, Eirini Eleni Papavassiliou, Symeon |
description | Mobile Edge Computing (MEC) has arisen as an effective computation paradigm to deal with the advanced application requirements in Internet of Things (IOT). In this paper, we treat the joint problem of autonomous MEC servers' operation and mobile devices' QoS satisfaction in a fully distributed IOT network. The autonomous MEC servers' activation is formulated as a minority game and through a distributed learning algorithm each server determines whether it becomes active or not. The mobile devices acting as stochastic learning automata select in a fully distributed manner an active server to get associated with for computation offloading, while for energy efficiency considerations, a non- cooperative game of satisfaction form among the IOT devices is formulated to determine the transmission power of each device in order to guarantee its QoS satisfaction. The performance evaluation of the proposed framework is achieved via modeling and simulation and detailed numerical and comparative results demonstrate its effectiveness, scalability, and robustness. |
doi_str_mv | 10.1109/GIIS.2018.8635770 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8635770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8635770</ieee_id><sourcerecordid>8635770</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-a23b3466af11c1c05710289696c9e426898ef1f60a7b123dfd0406454613653</originalsourceid><addsrcrecordid>eNotkLFOwzAUAA0SEqX0AxCLfyDhPTt27LGqShqpCEEY2ConeSlGTVwlzsDfg0Snm-6GY-wBIUUE-1SUZZUKQJMaLVWewxW7QyWNzkUu5DVbCFSQSGE_b9lqmr4BQKIxFtWCvReupyR-URgp-obvyY2DH45J7SZq-VuoeOWinzrXRB8G7ge-nmMYQh_mib-E2p-Ib9sj8U3oz3P8U-_ZTedOE60uXLLqefux2SX716LcrPeJFxnGxAlZy0xr1yE22IDKEYSx2urGUia0sYY67DS4vEYh266FDHSmMo1SK7lkj_9VT0SH8-h7N_4cLgPkLzOXThM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Game-theoretic Learning-based QoS Satisfaction in Autonomous Mobile Edge Computing</title><source>IEEE Xplore All Conference Series</source><creator>Apostolopoulos, Pavlos Athanasios ; Tsiropoulou, Eirini Eleni ; Papavassiliou, Symeon</creator><creatorcontrib>Apostolopoulos, Pavlos Athanasios ; Tsiropoulou, Eirini Eleni ; Papavassiliou, Symeon</creatorcontrib><description>Mobile Edge Computing (MEC) has arisen as an effective computation paradigm to deal with the advanced application requirements in Internet of Things (IOT). In this paper, we treat the joint problem of autonomous MEC servers' operation and mobile devices' QoS satisfaction in a fully distributed IOT network. The autonomous MEC servers' activation is formulated as a minority game and through a distributed learning algorithm each server determines whether it becomes active or not. The mobile devices acting as stochastic learning automata select in a fully distributed manner an active server to get associated with for computation offloading, while for energy efficiency considerations, a non- cooperative game of satisfaction form among the IOT devices is formulated to determine the transmission power of each device in order to guarantee its QoS satisfaction. The performance evaluation of the proposed framework is achieved via modeling and simulation and detailed numerical and comparative results demonstrate its effectiveness, scalability, and robustness.</description><identifier>EISSN: 2150-329X</identifier><identifier>EISBN: 1538672723</identifier><identifier>EISBN: 9781538672723</identifier><identifier>DOI: 10.1109/GIIS.2018.8635770</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational efficiency ; distributed learning ; Edge computing ; energy efficiency ; game theory ; Games ; Internet of Things ; mobile edge computing ; Mobile handsets ; Quality of service ; Satisfaction equilibrium ; Servers</subject><ispartof>2018 Global Information Infrastructure and Networking Symposium (GIIS), 2018, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8635770$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23909,23910,25118,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8635770$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Apostolopoulos, Pavlos Athanasios</creatorcontrib><creatorcontrib>Tsiropoulou, Eirini Eleni</creatorcontrib><creatorcontrib>Papavassiliou, Symeon</creatorcontrib><title>Game-theoretic Learning-based QoS Satisfaction in Autonomous Mobile Edge Computing</title><title>2018 Global Information Infrastructure and Networking Symposium (GIIS)</title><addtitle>GIIS</addtitle><description>Mobile Edge Computing (MEC) has arisen as an effective computation paradigm to deal with the advanced application requirements in Internet of Things (IOT). In this paper, we treat the joint problem of autonomous MEC servers' operation and mobile devices' QoS satisfaction in a fully distributed IOT network. The autonomous MEC servers' activation is formulated as a minority game and through a distributed learning algorithm each server determines whether it becomes active or not. The mobile devices acting as stochastic learning automata select in a fully distributed manner an active server to get associated with for computation offloading, while for energy efficiency considerations, a non- cooperative game of satisfaction form among the IOT devices is formulated to determine the transmission power of each device in order to guarantee its QoS satisfaction. The performance evaluation of the proposed framework is achieved via modeling and simulation and detailed numerical and comparative results demonstrate its effectiveness, scalability, and robustness.</description><subject>Computational efficiency</subject><subject>distributed learning</subject><subject>Edge computing</subject><subject>energy efficiency</subject><subject>game theory</subject><subject>Games</subject><subject>Internet of Things</subject><subject>mobile edge computing</subject><subject>Mobile handsets</subject><subject>Quality of service</subject><subject>Satisfaction equilibrium</subject><subject>Servers</subject><issn>2150-329X</issn><isbn>1538672723</isbn><isbn>9781538672723</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkLFOwzAUAA0SEqX0AxCLfyDhPTt27LGqShqpCEEY2ConeSlGTVwlzsDfg0Snm-6GY-wBIUUE-1SUZZUKQJMaLVWewxW7QyWNzkUu5DVbCFSQSGE_b9lqmr4BQKIxFtWCvReupyR-URgp-obvyY2DH45J7SZq-VuoeOWinzrXRB8G7ge-nmMYQh_mib-E2p-Ib9sj8U3oz3P8U-_ZTedOE60uXLLqefux2SX716LcrPeJFxnGxAlZy0xr1yE22IDKEYSx2urGUia0sYY67DS4vEYh266FDHSmMo1SK7lkj_9VT0SH8-h7N_4cLgPkLzOXThM</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Apostolopoulos, Pavlos Athanasios</creator><creator>Tsiropoulou, Eirini Eleni</creator><creator>Papavassiliou, Symeon</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201810</creationdate><title>Game-theoretic Learning-based QoS Satisfaction in Autonomous Mobile Edge Computing</title><author>Apostolopoulos, Pavlos Athanasios ; Tsiropoulou, Eirini Eleni ; Papavassiliou, Symeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-a23b3466af11c1c05710289696c9e426898ef1f60a7b123dfd0406454613653</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational efficiency</topic><topic>distributed learning</topic><topic>Edge computing</topic><topic>energy efficiency</topic><topic>game theory</topic><topic>Games</topic><topic>Internet of Things</topic><topic>mobile edge computing</topic><topic>Mobile handsets</topic><topic>Quality of service</topic><topic>Satisfaction equilibrium</topic><topic>Servers</topic><toplevel>online_resources</toplevel><creatorcontrib>Apostolopoulos, Pavlos Athanasios</creatorcontrib><creatorcontrib>Tsiropoulou, Eirini Eleni</creatorcontrib><creatorcontrib>Papavassiliou, Symeon</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Apostolopoulos, Pavlos Athanasios</au><au>Tsiropoulou, Eirini Eleni</au><au>Papavassiliou, Symeon</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Game-theoretic Learning-based QoS Satisfaction in Autonomous Mobile Edge Computing</atitle><btitle>2018 Global Information Infrastructure and Networking Symposium (GIIS)</btitle><stitle>GIIS</stitle><date>2018-10</date><risdate>2018</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2150-329X</eissn><eisbn>1538672723</eisbn><eisbn>9781538672723</eisbn><abstract>Mobile Edge Computing (MEC) has arisen as an effective computation paradigm to deal with the advanced application requirements in Internet of Things (IOT). In this paper, we treat the joint problem of autonomous MEC servers' operation and mobile devices' QoS satisfaction in a fully distributed IOT network. The autonomous MEC servers' activation is formulated as a minority game and through a distributed learning algorithm each server determines whether it becomes active or not. The mobile devices acting as stochastic learning automata select in a fully distributed manner an active server to get associated with for computation offloading, while for energy efficiency considerations, a non- cooperative game of satisfaction form among the IOT devices is formulated to determine the transmission power of each device in order to guarantee its QoS satisfaction. The performance evaluation of the proposed framework is achieved via modeling and simulation and detailed numerical and comparative results demonstrate its effectiveness, scalability, and robustness.</abstract><pub>IEEE</pub><doi>10.1109/GIIS.2018.8635770</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2150-329X |
ispartof | 2018 Global Information Infrastructure and Networking Symposium (GIIS), 2018, p.1-5 |
issn | 2150-329X |
language | eng |
recordid | cdi_ieee_primary_8635770 |
source | IEEE Xplore All Conference Series |
subjects | Computational efficiency distributed learning Edge computing energy efficiency game theory Games Internet of Things mobile edge computing Mobile handsets Quality of service Satisfaction equilibrium Servers |
title | Game-theoretic Learning-based QoS Satisfaction in Autonomous Mobile Edge Computing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A55%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Game-theoretic%20Learning-based%20QoS%20Satisfaction%20in%20Autonomous%20Mobile%20Edge%20Computing&rft.btitle=2018%20Global%20Information%20Infrastructure%20and%20Networking%20Symposium%20(GIIS)&rft.au=Apostolopoulos,%20Pavlos%20Athanasios&rft.date=2018-10&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2150-329X&rft_id=info:doi/10.1109/GIIS.2018.8635770&rft.eisbn=1538672723&rft.eisbn_list=9781538672723&rft_dat=%3Cieee_CHZPO%3E8635770%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i241t-a23b3466af11c1c05710289696c9e426898ef1f60a7b123dfd0406454613653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8635770&rfr_iscdi=true |