Loading…

All Electric Aircraft Mid-Air Recharging via Wireless Power Transfer: Battery Requirement Study

The all-electric-aircraft (AEA) has the advantage of low engine noise and low carbon dioxide emission. However, the current state of art battery technology has a much lower specific energy than the fossil fuel. As a result, the AEA has shorter overall flight duration if it is fully relying the batte...

Full description

Saved in:
Bibliographic Details
Main Authors: Goh, Shu Ting, Reza Zekavat, Seyed
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The all-electric-aircraft (AEA) has the advantage of low engine noise and low carbon dioxide emission. However, the current state of art battery technology has a much lower specific energy than the fossil fuel. As a result, the AEA has shorter overall flight duration if it is fully relying the battery system as sole energy source. Therefore, mid-air recharging (MAR) on AEA's battery system via wireless power transfer (WPT) from space solar power (SSP) satellite constellation is considered the key technology to enable long flight duration. This paper studies the preliminary requirement of battery and recharging method for AEA applications. The recharging method includes both induction based WPT on ground and MAR via SSP satellites. Studies show that the development maturity of Lithium-Sulphur and Lithium-Air batteries are the key technologies to enable commercial AEA in the future. Furthermore, it shows that fully earth coverage of SSP satellite constellation is not required. The long AEA flight duration can be achieved via a constellation design which enables the AEA to be recharged for 45minutes with 20 minutes of MAR unavailability
ISSN:2380-7636
DOI:10.1109/WiSEE.2018.8637341