Loading…

Adaptive Pattern Matching with Reinforcement Learning for Dynamic Graphs

Graph pattern matching algorithms to handle million-scale dynamic graphs are widely used in many applications such as social network analytics and suspicious transaction detections from financial networks. On the other hand, the computation complexity of many graph pattern matching algorithms is exp...

Full description

Saved in:
Bibliographic Details
Main Authors: Kanezashi, Hiroki, Suzumura, Toyotaro, Garcia-Gasulla, Dario, Oh, Min-Hwan, Matsuoka, Satoshi
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Graph pattern matching algorithms to handle million-scale dynamic graphs are widely used in many applications such as social network analytics and suspicious transaction detections from financial networks. On the other hand, the computation complexity of many graph pattern matching algorithms is expensive, and it is not affordable to extract patterns from million-scale graphs. Moreover, most real-world networks are time-evolving, updating their structures continuously, which makes it harder to update and output newly matched patterns in real time. Many incremental graph pattern matching algorithms which reduce the number of updates have been proposed to handle such dynamic graphs. However, it is still challenging to recompute vertices in the incremental graph pattern matching algorithms in a single process, and that prevents the real-time analysis. We propose an incremental graph pattern matching algorithm to deal with time-evolving graph data and also propose an adaptive optimization system based on reinforcement learning to recompute vertices in the incremental process more efficiently. Then we discuss the qualitative efficiency of our system with several types of data graphs and pattern graphs. We evaluate the performance using million-scale attributed and time-evolving social graphs. Our incremental algorithm is up to 10.1 times faster than an existing graph pattern matching and 1.95 times faster with the adaptive systems in a computation node than naive incremental processing.
ISSN:2640-0316
DOI:10.1109/HiPC.2018.00019