Loading…
Polarization Engineering of AlGaN/GaN HEMT With Graded InGaN Sub-Channel for High-Linearity X-Band Applications
We report on the power and linearity performance of metal-organic chemical vapor deposition grown polarization-engineered novel structure that combines the AlGaN/GaN high-electron-mobility transistor with a graded InGaN sub-channel layer. The fabricated transistors with composite two-dimensional(2D)...
Saved in:
Published in: | IEEE electron device letters 2019-04, Vol.40 (4), p.522-525 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-8cc99bec421aadffe31ea9aebd157192c6675d1e32e7d7b7ca95980be163d4983 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-8cc99bec421aadffe31ea9aebd157192c6675d1e32e7d7b7ca95980be163d4983 |
container_end_page | 525 |
container_issue | 4 |
container_start_page | 522 |
container_title | IEEE electron device letters |
container_volume | 40 |
creator | Sohel, Shahadat H. Xie, Andy Beam, Edward Xue, Hao Razzak, Towhidur Bajaj, Sanyam Cao, Yu Lee, Cathy Lu, Wu Rajan, Siddharth |
description | We report on the power and linearity performance of metal-organic chemical vapor deposition grown polarization-engineered novel structure that combines the AlGaN/GaN high-electron-mobility transistor with a graded InGaN sub-channel layer. The fabricated transistors with composite two-dimensional(2D) and three-dimensional(3D) electron channels showed nearly flat transconductance and power gain profiles. The maximum f T and f max values of 18 GHz and 38 GHz were measured for 0.7-μm gate-length transistors. Load-pull measurement at 10 GHz revealed a maximum output power of 2.2 W/mm. Two-tone measurement at 10 GHz showed an excellent OIP3 of 38 dBm for 150-μm device width and a corresponding linearity figure of merit OIP3/P DC of 9.7 dB. These results suggest that InGaN-based composite 2D-3D channel transistors could be useful for high-frequency applications requiring high linearity. |
doi_str_mv | 10.1109/LED.2019.2899100 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8641367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8641367</ieee_id><sourcerecordid>2203400745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-8cc99bec421aadffe31ea9aebd157192c6675d1e32e7d7b7ca95980be163d4983</originalsourceid><addsrcrecordid>eNo9kNtLwzAUxoMoOKfvgi8Bn7vlNOklj3PWbVAv4ETfSpqcbpGazrR7mH-9nRs-HD44fBf4EXINbATA5DjP7kchAzkKUymBsRMygChKAxbF_JQMWCIg4MDic3LRtp-MgRCJGJDmpamVtz-qs42jmVtZh-itW9GmopN6pp7G_dF59rik77Zb05lXBg1duP37dVsG07VyDmtaNZ7O7Wod5H1FX9nt6Edwp5yhk82mtvpvob0kZ5WqW7w66pC8PWTL6TzIn2eL6SQPdCihC1KtpSxRixCUMlWFHFBJhaWBKAEZ6jhOIgPIQ0xMUiZayUimrESIuREy5UNye-jd-OZ7i21XfDZb7_rJIgwZF6wHEvUudnBp37Stx6rYePul_K4AVuyxFj3WYo-1OGLtIzeHiEXEf3saC-Bxwn8B6GtykA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203400745</pqid></control><display><type>article</type><title>Polarization Engineering of AlGaN/GaN HEMT With Graded InGaN Sub-Channel for High-Linearity X-Band Applications</title><source>IEEE Xplore (Online service)</source><creator>Sohel, Shahadat H. ; Xie, Andy ; Beam, Edward ; Xue, Hao ; Razzak, Towhidur ; Bajaj, Sanyam ; Cao, Yu ; Lee, Cathy ; Lu, Wu ; Rajan, Siddharth</creator><creatorcontrib>Sohel, Shahadat H. ; Xie, Andy ; Beam, Edward ; Xue, Hao ; Razzak, Towhidur ; Bajaj, Sanyam ; Cao, Yu ; Lee, Cathy ; Lu, Wu ; Rajan, Siddharth</creatorcontrib><description>We report on the power and linearity performance of metal-organic chemical vapor deposition grown polarization-engineered novel structure that combines the AlGaN/GaN high-electron-mobility transistor with a graded InGaN sub-channel layer. The fabricated transistors with composite two-dimensional(2D) and three-dimensional(3D) electron channels showed nearly flat transconductance and power gain profiles. The maximum f T and f max values of 18 GHz and 38 GHz were measured for 0.7-μm gate-length transistors. Load-pull measurement at 10 GHz revealed a maximum output power of 2.2 W/mm. Two-tone measurement at 10 GHz showed an excellent OIP3 of 38 dBm for 150-μm device width and a corresponding linearity figure of merit OIP3/P DC of 9.7 dB. These results suggest that InGaN-based composite 2D-3D channel transistors could be useful for high-frequency applications requiring high linearity.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2019.2899100</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum gallium nitride ; Aluminum gallium nitrides ; composite 2D-3D channel ; Figure of merit ; Gallium nitrides ; graded InGaN channel ; HEMTs ; Indium gallium nitrides ; Linearity ; Logic gates ; Metalorganic chemical vapor deposition ; Organic chemicals ; Organic chemistry ; Polarization ; polarization-graded field-effect transistor ; Power gain ; Semiconductor devices ; Superhigh frequencies ; Three dimensional composites ; Transconductance ; Transistor linearity ; Transistors ; Two dimensional composites ; two-tone linearity ; Wide band gap semiconductors</subject><ispartof>IEEE electron device letters, 2019-04, Vol.40 (4), p.522-525</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-8cc99bec421aadffe31ea9aebd157192c6675d1e32e7d7b7ca95980be163d4983</citedby><cites>FETCH-LOGICAL-c291t-8cc99bec421aadffe31ea9aebd157192c6675d1e32e7d7b7ca95980be163d4983</cites><orcidid>0000-0001-9389-6982 ; 0000-0001-6776-9082 ; 0000-0002-7669-8690 ; 0000-0002-8169-1979 ; 0000-0001-9232-7024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8641367$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Sohel, Shahadat H.</creatorcontrib><creatorcontrib>Xie, Andy</creatorcontrib><creatorcontrib>Beam, Edward</creatorcontrib><creatorcontrib>Xue, Hao</creatorcontrib><creatorcontrib>Razzak, Towhidur</creatorcontrib><creatorcontrib>Bajaj, Sanyam</creatorcontrib><creatorcontrib>Cao, Yu</creatorcontrib><creatorcontrib>Lee, Cathy</creatorcontrib><creatorcontrib>Lu, Wu</creatorcontrib><creatorcontrib>Rajan, Siddharth</creatorcontrib><title>Polarization Engineering of AlGaN/GaN HEMT With Graded InGaN Sub-Channel for High-Linearity X-Band Applications</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>We report on the power and linearity performance of metal-organic chemical vapor deposition grown polarization-engineered novel structure that combines the AlGaN/GaN high-electron-mobility transistor with a graded InGaN sub-channel layer. The fabricated transistors with composite two-dimensional(2D) and three-dimensional(3D) electron channels showed nearly flat transconductance and power gain profiles. The maximum f T and f max values of 18 GHz and 38 GHz were measured for 0.7-μm gate-length transistors. Load-pull measurement at 10 GHz revealed a maximum output power of 2.2 W/mm. Two-tone measurement at 10 GHz showed an excellent OIP3 of 38 dBm for 150-μm device width and a corresponding linearity figure of merit OIP3/P DC of 9.7 dB. These results suggest that InGaN-based composite 2D-3D channel transistors could be useful for high-frequency applications requiring high linearity.</description><subject>Aluminum gallium nitride</subject><subject>Aluminum gallium nitrides</subject><subject>composite 2D-3D channel</subject><subject>Figure of merit</subject><subject>Gallium nitrides</subject><subject>graded InGaN channel</subject><subject>HEMTs</subject><subject>Indium gallium nitrides</subject><subject>Linearity</subject><subject>Logic gates</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Organic chemicals</subject><subject>Organic chemistry</subject><subject>Polarization</subject><subject>polarization-graded field-effect transistor</subject><subject>Power gain</subject><subject>Semiconductor devices</subject><subject>Superhigh frequencies</subject><subject>Three dimensional composites</subject><subject>Transconductance</subject><subject>Transistor linearity</subject><subject>Transistors</subject><subject>Two dimensional composites</subject><subject>two-tone linearity</subject><subject>Wide band gap semiconductors</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kNtLwzAUxoMoOKfvgi8Bn7vlNOklj3PWbVAv4ETfSpqcbpGazrR7mH-9nRs-HD44fBf4EXINbATA5DjP7kchAzkKUymBsRMygChKAxbF_JQMWCIg4MDic3LRtp-MgRCJGJDmpamVtz-qs42jmVtZh-itW9GmopN6pp7G_dF59rik77Zb05lXBg1duP37dVsG07VyDmtaNZ7O7Wod5H1FX9nt6Edwp5yhk82mtvpvob0kZ5WqW7w66pC8PWTL6TzIn2eL6SQPdCihC1KtpSxRixCUMlWFHFBJhaWBKAEZ6jhOIgPIQ0xMUiZayUimrESIuREy5UNye-jd-OZ7i21XfDZb7_rJIgwZF6wHEvUudnBp37Stx6rYePul_K4AVuyxFj3WYo-1OGLtIzeHiEXEf3saC-Bxwn8B6GtykA</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Sohel, Shahadat H.</creator><creator>Xie, Andy</creator><creator>Beam, Edward</creator><creator>Xue, Hao</creator><creator>Razzak, Towhidur</creator><creator>Bajaj, Sanyam</creator><creator>Cao, Yu</creator><creator>Lee, Cathy</creator><creator>Lu, Wu</creator><creator>Rajan, Siddharth</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9389-6982</orcidid><orcidid>https://orcid.org/0000-0001-6776-9082</orcidid><orcidid>https://orcid.org/0000-0002-7669-8690</orcidid><orcidid>https://orcid.org/0000-0002-8169-1979</orcidid><orcidid>https://orcid.org/0000-0001-9232-7024</orcidid></search><sort><creationdate>20190401</creationdate><title>Polarization Engineering of AlGaN/GaN HEMT With Graded InGaN Sub-Channel for High-Linearity X-Band Applications</title><author>Sohel, Shahadat H. ; Xie, Andy ; Beam, Edward ; Xue, Hao ; Razzak, Towhidur ; Bajaj, Sanyam ; Cao, Yu ; Lee, Cathy ; Lu, Wu ; Rajan, Siddharth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-8cc99bec421aadffe31ea9aebd157192c6675d1e32e7d7b7ca95980be163d4983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum gallium nitride</topic><topic>Aluminum gallium nitrides</topic><topic>composite 2D-3D channel</topic><topic>Figure of merit</topic><topic>Gallium nitrides</topic><topic>graded InGaN channel</topic><topic>HEMTs</topic><topic>Indium gallium nitrides</topic><topic>Linearity</topic><topic>Logic gates</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Organic chemicals</topic><topic>Organic chemistry</topic><topic>Polarization</topic><topic>polarization-graded field-effect transistor</topic><topic>Power gain</topic><topic>Semiconductor devices</topic><topic>Superhigh frequencies</topic><topic>Three dimensional composites</topic><topic>Transconductance</topic><topic>Transistor linearity</topic><topic>Transistors</topic><topic>Two dimensional composites</topic><topic>two-tone linearity</topic><topic>Wide band gap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sohel, Shahadat H.</creatorcontrib><creatorcontrib>Xie, Andy</creatorcontrib><creatorcontrib>Beam, Edward</creatorcontrib><creatorcontrib>Xue, Hao</creatorcontrib><creatorcontrib>Razzak, Towhidur</creatorcontrib><creatorcontrib>Bajaj, Sanyam</creatorcontrib><creatorcontrib>Cao, Yu</creatorcontrib><creatorcontrib>Lee, Cathy</creatorcontrib><creatorcontrib>Lu, Wu</creatorcontrib><creatorcontrib>Rajan, Siddharth</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sohel, Shahadat H.</au><au>Xie, Andy</au><au>Beam, Edward</au><au>Xue, Hao</au><au>Razzak, Towhidur</au><au>Bajaj, Sanyam</au><au>Cao, Yu</au><au>Lee, Cathy</au><au>Lu, Wu</au><au>Rajan, Siddharth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polarization Engineering of AlGaN/GaN HEMT With Graded InGaN Sub-Channel for High-Linearity X-Band Applications</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>40</volume><issue>4</issue><spage>522</spage><epage>525</epage><pages>522-525</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>We report on the power and linearity performance of metal-organic chemical vapor deposition grown polarization-engineered novel structure that combines the AlGaN/GaN high-electron-mobility transistor with a graded InGaN sub-channel layer. The fabricated transistors with composite two-dimensional(2D) and three-dimensional(3D) electron channels showed nearly flat transconductance and power gain profiles. The maximum f T and f max values of 18 GHz and 38 GHz were measured for 0.7-μm gate-length transistors. Load-pull measurement at 10 GHz revealed a maximum output power of 2.2 W/mm. Two-tone measurement at 10 GHz showed an excellent OIP3 of 38 dBm for 150-μm device width and a corresponding linearity figure of merit OIP3/P DC of 9.7 dB. These results suggest that InGaN-based composite 2D-3D channel transistors could be useful for high-frequency applications requiring high linearity.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2019.2899100</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-9389-6982</orcidid><orcidid>https://orcid.org/0000-0001-6776-9082</orcidid><orcidid>https://orcid.org/0000-0002-7669-8690</orcidid><orcidid>https://orcid.org/0000-0002-8169-1979</orcidid><orcidid>https://orcid.org/0000-0001-9232-7024</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0741-3106 |
ispartof | IEEE electron device letters, 2019-04, Vol.40 (4), p.522-525 |
issn | 0741-3106 1558-0563 |
language | eng |
recordid | cdi_ieee_primary_8641367 |
source | IEEE Xplore (Online service) |
subjects | Aluminum gallium nitride Aluminum gallium nitrides composite 2D-3D channel Figure of merit Gallium nitrides graded InGaN channel HEMTs Indium gallium nitrides Linearity Logic gates Metalorganic chemical vapor deposition Organic chemicals Organic chemistry Polarization polarization-graded field-effect transistor Power gain Semiconductor devices Superhigh frequencies Three dimensional composites Transconductance Transistor linearity Transistors Two dimensional composites two-tone linearity Wide band gap semiconductors |
title | Polarization Engineering of AlGaN/GaN HEMT With Graded InGaN Sub-Channel for High-Linearity X-Band Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polarization%20Engineering%20of%20AlGaN/GaN%20HEMT%20With%20Graded%20InGaN%20Sub-Channel%20for%20High-Linearity%20X-Band%20Applications&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Sohel,%20Shahadat%20H.&rft.date=2019-04-01&rft.volume=40&rft.issue=4&rft.spage=522&rft.epage=525&rft.pages=522-525&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2019.2899100&rft_dat=%3Cproquest_ieee_%3E2203400745%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-8cc99bec421aadffe31ea9aebd157192c6675d1e32e7d7b7ca95980be163d4983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2203400745&rft_id=info:pmid/&rft_ieee_id=8641367&rfr_iscdi=true |