Loading…

Polarization Engineering of AlGaN/GaN HEMT With Graded InGaN Sub-Channel for High-Linearity X-Band Applications

We report on the power and linearity performance of metal-organic chemical vapor deposition grown polarization-engineered novel structure that combines the AlGaN/GaN high-electron-mobility transistor with a graded InGaN sub-channel layer. The fabricated transistors with composite two-dimensional(2D)...

Full description

Saved in:
Bibliographic Details
Published in:IEEE electron device letters 2019-04, Vol.40 (4), p.522-525
Main Authors: Sohel, Shahadat H., Xie, Andy, Beam, Edward, Xue, Hao, Razzak, Towhidur, Bajaj, Sanyam, Cao, Yu, Lee, Cathy, Lu, Wu, Rajan, Siddharth
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-8cc99bec421aadffe31ea9aebd157192c6675d1e32e7d7b7ca95980be163d4983
cites cdi_FETCH-LOGICAL-c291t-8cc99bec421aadffe31ea9aebd157192c6675d1e32e7d7b7ca95980be163d4983
container_end_page 525
container_issue 4
container_start_page 522
container_title IEEE electron device letters
container_volume 40
creator Sohel, Shahadat H.
Xie, Andy
Beam, Edward
Xue, Hao
Razzak, Towhidur
Bajaj, Sanyam
Cao, Yu
Lee, Cathy
Lu, Wu
Rajan, Siddharth
description We report on the power and linearity performance of metal-organic chemical vapor deposition grown polarization-engineered novel structure that combines the AlGaN/GaN high-electron-mobility transistor with a graded InGaN sub-channel layer. The fabricated transistors with composite two-dimensional(2D) and three-dimensional(3D) electron channels showed nearly flat transconductance and power gain profiles. The maximum f T and f max values of 18 GHz and 38 GHz were measured for 0.7-μm gate-length transistors. Load-pull measurement at 10 GHz revealed a maximum output power of 2.2 W/mm. Two-tone measurement at 10 GHz showed an excellent OIP3 of 38 dBm for 150-μm device width and a corresponding linearity figure of merit OIP3/P DC of 9.7 dB. These results suggest that InGaN-based composite 2D-3D channel transistors could be useful for high-frequency applications requiring high linearity.
doi_str_mv 10.1109/LED.2019.2899100
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8641367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8641367</ieee_id><sourcerecordid>2203400745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-8cc99bec421aadffe31ea9aebd157192c6675d1e32e7d7b7ca95980be163d4983</originalsourceid><addsrcrecordid>eNo9kNtLwzAUxoMoOKfvgi8Bn7vlNOklj3PWbVAv4ETfSpqcbpGazrR7mH-9nRs-HD44fBf4EXINbATA5DjP7kchAzkKUymBsRMygChKAxbF_JQMWCIg4MDic3LRtp-MgRCJGJDmpamVtz-qs42jmVtZh-itW9GmopN6pp7G_dF59rik77Zb05lXBg1duP37dVsG07VyDmtaNZ7O7Wod5H1FX9nt6Edwp5yhk82mtvpvob0kZ5WqW7w66pC8PWTL6TzIn2eL6SQPdCihC1KtpSxRixCUMlWFHFBJhaWBKAEZ6jhOIgPIQ0xMUiZayUimrESIuREy5UNye-jd-OZ7i21XfDZb7_rJIgwZF6wHEvUudnBp37Stx6rYePul_K4AVuyxFj3WYo-1OGLtIzeHiEXEf3saC-Bxwn8B6GtykA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203400745</pqid></control><display><type>article</type><title>Polarization Engineering of AlGaN/GaN HEMT With Graded InGaN Sub-Channel for High-Linearity X-Band Applications</title><source>IEEE Xplore (Online service)</source><creator>Sohel, Shahadat H. ; Xie, Andy ; Beam, Edward ; Xue, Hao ; Razzak, Towhidur ; Bajaj, Sanyam ; Cao, Yu ; Lee, Cathy ; Lu, Wu ; Rajan, Siddharth</creator><creatorcontrib>Sohel, Shahadat H. ; Xie, Andy ; Beam, Edward ; Xue, Hao ; Razzak, Towhidur ; Bajaj, Sanyam ; Cao, Yu ; Lee, Cathy ; Lu, Wu ; Rajan, Siddharth</creatorcontrib><description>We report on the power and linearity performance of metal-organic chemical vapor deposition grown polarization-engineered novel structure that combines the AlGaN/GaN high-electron-mobility transistor with a graded InGaN sub-channel layer. The fabricated transistors with composite two-dimensional(2D) and three-dimensional(3D) electron channels showed nearly flat transconductance and power gain profiles. The maximum f T and f max values of 18 GHz and 38 GHz were measured for 0.7-μm gate-length transistors. Load-pull measurement at 10 GHz revealed a maximum output power of 2.2 W/mm. Two-tone measurement at 10 GHz showed an excellent OIP3 of 38 dBm for 150-μm device width and a corresponding linearity figure of merit OIP3/P DC of 9.7 dB. These results suggest that InGaN-based composite 2D-3D channel transistors could be useful for high-frequency applications requiring high linearity.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2019.2899100</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum gallium nitride ; Aluminum gallium nitrides ; composite 2D-3D channel ; Figure of merit ; Gallium nitrides ; graded InGaN channel ; HEMTs ; Indium gallium nitrides ; Linearity ; Logic gates ; Metalorganic chemical vapor deposition ; Organic chemicals ; Organic chemistry ; Polarization ; polarization-graded field-effect transistor ; Power gain ; Semiconductor devices ; Superhigh frequencies ; Three dimensional composites ; Transconductance ; Transistor linearity ; Transistors ; Two dimensional composites ; two-tone linearity ; Wide band gap semiconductors</subject><ispartof>IEEE electron device letters, 2019-04, Vol.40 (4), p.522-525</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-8cc99bec421aadffe31ea9aebd157192c6675d1e32e7d7b7ca95980be163d4983</citedby><cites>FETCH-LOGICAL-c291t-8cc99bec421aadffe31ea9aebd157192c6675d1e32e7d7b7ca95980be163d4983</cites><orcidid>0000-0001-9389-6982 ; 0000-0001-6776-9082 ; 0000-0002-7669-8690 ; 0000-0002-8169-1979 ; 0000-0001-9232-7024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8641367$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Sohel, Shahadat H.</creatorcontrib><creatorcontrib>Xie, Andy</creatorcontrib><creatorcontrib>Beam, Edward</creatorcontrib><creatorcontrib>Xue, Hao</creatorcontrib><creatorcontrib>Razzak, Towhidur</creatorcontrib><creatorcontrib>Bajaj, Sanyam</creatorcontrib><creatorcontrib>Cao, Yu</creatorcontrib><creatorcontrib>Lee, Cathy</creatorcontrib><creatorcontrib>Lu, Wu</creatorcontrib><creatorcontrib>Rajan, Siddharth</creatorcontrib><title>Polarization Engineering of AlGaN/GaN HEMT With Graded InGaN Sub-Channel for High-Linearity X-Band Applications</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>We report on the power and linearity performance of metal-organic chemical vapor deposition grown polarization-engineered novel structure that combines the AlGaN/GaN high-electron-mobility transistor with a graded InGaN sub-channel layer. The fabricated transistors with composite two-dimensional(2D) and three-dimensional(3D) electron channels showed nearly flat transconductance and power gain profiles. The maximum f T and f max values of 18 GHz and 38 GHz were measured for 0.7-μm gate-length transistors. Load-pull measurement at 10 GHz revealed a maximum output power of 2.2 W/mm. Two-tone measurement at 10 GHz showed an excellent OIP3 of 38 dBm for 150-μm device width and a corresponding linearity figure of merit OIP3/P DC of 9.7 dB. These results suggest that InGaN-based composite 2D-3D channel transistors could be useful for high-frequency applications requiring high linearity.</description><subject>Aluminum gallium nitride</subject><subject>Aluminum gallium nitrides</subject><subject>composite 2D-3D channel</subject><subject>Figure of merit</subject><subject>Gallium nitrides</subject><subject>graded InGaN channel</subject><subject>HEMTs</subject><subject>Indium gallium nitrides</subject><subject>Linearity</subject><subject>Logic gates</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Organic chemicals</subject><subject>Organic chemistry</subject><subject>Polarization</subject><subject>polarization-graded field-effect transistor</subject><subject>Power gain</subject><subject>Semiconductor devices</subject><subject>Superhigh frequencies</subject><subject>Three dimensional composites</subject><subject>Transconductance</subject><subject>Transistor linearity</subject><subject>Transistors</subject><subject>Two dimensional composites</subject><subject>two-tone linearity</subject><subject>Wide band gap semiconductors</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kNtLwzAUxoMoOKfvgi8Bn7vlNOklj3PWbVAv4ETfSpqcbpGazrR7mH-9nRs-HD44fBf4EXINbATA5DjP7kchAzkKUymBsRMygChKAxbF_JQMWCIg4MDic3LRtp-MgRCJGJDmpamVtz-qs42jmVtZh-itW9GmopN6pp7G_dF59rik77Zb05lXBg1duP37dVsG07VyDmtaNZ7O7Wod5H1FX9nt6Edwp5yhk82mtvpvob0kZ5WqW7w66pC8PWTL6TzIn2eL6SQPdCihC1KtpSxRixCUMlWFHFBJhaWBKAEZ6jhOIgPIQ0xMUiZayUimrESIuREy5UNye-jd-OZ7i21XfDZb7_rJIgwZF6wHEvUudnBp37Stx6rYePul_K4AVuyxFj3WYo-1OGLtIzeHiEXEf3saC-Bxwn8B6GtykA</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Sohel, Shahadat H.</creator><creator>Xie, Andy</creator><creator>Beam, Edward</creator><creator>Xue, Hao</creator><creator>Razzak, Towhidur</creator><creator>Bajaj, Sanyam</creator><creator>Cao, Yu</creator><creator>Lee, Cathy</creator><creator>Lu, Wu</creator><creator>Rajan, Siddharth</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9389-6982</orcidid><orcidid>https://orcid.org/0000-0001-6776-9082</orcidid><orcidid>https://orcid.org/0000-0002-7669-8690</orcidid><orcidid>https://orcid.org/0000-0002-8169-1979</orcidid><orcidid>https://orcid.org/0000-0001-9232-7024</orcidid></search><sort><creationdate>20190401</creationdate><title>Polarization Engineering of AlGaN/GaN HEMT With Graded InGaN Sub-Channel for High-Linearity X-Band Applications</title><author>Sohel, Shahadat H. ; Xie, Andy ; Beam, Edward ; Xue, Hao ; Razzak, Towhidur ; Bajaj, Sanyam ; Cao, Yu ; Lee, Cathy ; Lu, Wu ; Rajan, Siddharth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-8cc99bec421aadffe31ea9aebd157192c6675d1e32e7d7b7ca95980be163d4983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum gallium nitride</topic><topic>Aluminum gallium nitrides</topic><topic>composite 2D-3D channel</topic><topic>Figure of merit</topic><topic>Gallium nitrides</topic><topic>graded InGaN channel</topic><topic>HEMTs</topic><topic>Indium gallium nitrides</topic><topic>Linearity</topic><topic>Logic gates</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Organic chemicals</topic><topic>Organic chemistry</topic><topic>Polarization</topic><topic>polarization-graded field-effect transistor</topic><topic>Power gain</topic><topic>Semiconductor devices</topic><topic>Superhigh frequencies</topic><topic>Three dimensional composites</topic><topic>Transconductance</topic><topic>Transistor linearity</topic><topic>Transistors</topic><topic>Two dimensional composites</topic><topic>two-tone linearity</topic><topic>Wide band gap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sohel, Shahadat H.</creatorcontrib><creatorcontrib>Xie, Andy</creatorcontrib><creatorcontrib>Beam, Edward</creatorcontrib><creatorcontrib>Xue, Hao</creatorcontrib><creatorcontrib>Razzak, Towhidur</creatorcontrib><creatorcontrib>Bajaj, Sanyam</creatorcontrib><creatorcontrib>Cao, Yu</creatorcontrib><creatorcontrib>Lee, Cathy</creatorcontrib><creatorcontrib>Lu, Wu</creatorcontrib><creatorcontrib>Rajan, Siddharth</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sohel, Shahadat H.</au><au>Xie, Andy</au><au>Beam, Edward</au><au>Xue, Hao</au><au>Razzak, Towhidur</au><au>Bajaj, Sanyam</au><au>Cao, Yu</au><au>Lee, Cathy</au><au>Lu, Wu</au><au>Rajan, Siddharth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polarization Engineering of AlGaN/GaN HEMT With Graded InGaN Sub-Channel for High-Linearity X-Band Applications</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>40</volume><issue>4</issue><spage>522</spage><epage>525</epage><pages>522-525</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>We report on the power and linearity performance of metal-organic chemical vapor deposition grown polarization-engineered novel structure that combines the AlGaN/GaN high-electron-mobility transistor with a graded InGaN sub-channel layer. The fabricated transistors with composite two-dimensional(2D) and three-dimensional(3D) electron channels showed nearly flat transconductance and power gain profiles. The maximum f T and f max values of 18 GHz and 38 GHz were measured for 0.7-μm gate-length transistors. Load-pull measurement at 10 GHz revealed a maximum output power of 2.2 W/mm. Two-tone measurement at 10 GHz showed an excellent OIP3 of 38 dBm for 150-μm device width and a corresponding linearity figure of merit OIP3/P DC of 9.7 dB. These results suggest that InGaN-based composite 2D-3D channel transistors could be useful for high-frequency applications requiring high linearity.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2019.2899100</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-9389-6982</orcidid><orcidid>https://orcid.org/0000-0001-6776-9082</orcidid><orcidid>https://orcid.org/0000-0002-7669-8690</orcidid><orcidid>https://orcid.org/0000-0002-8169-1979</orcidid><orcidid>https://orcid.org/0000-0001-9232-7024</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2019-04, Vol.40 (4), p.522-525
issn 0741-3106
1558-0563
language eng
recordid cdi_ieee_primary_8641367
source IEEE Xplore (Online service)
subjects Aluminum gallium nitride
Aluminum gallium nitrides
composite 2D-3D channel
Figure of merit
Gallium nitrides
graded InGaN channel
HEMTs
Indium gallium nitrides
Linearity
Logic gates
Metalorganic chemical vapor deposition
Organic chemicals
Organic chemistry
Polarization
polarization-graded field-effect transistor
Power gain
Semiconductor devices
Superhigh frequencies
Three dimensional composites
Transconductance
Transistor linearity
Transistors
Two dimensional composites
two-tone linearity
Wide band gap semiconductors
title Polarization Engineering of AlGaN/GaN HEMT With Graded InGaN Sub-Channel for High-Linearity X-Band Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polarization%20Engineering%20of%20AlGaN/GaN%20HEMT%20With%20Graded%20InGaN%20Sub-Channel%20for%20High-Linearity%20X-Band%20Applications&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Sohel,%20Shahadat%20H.&rft.date=2019-04-01&rft.volume=40&rft.issue=4&rft.spage=522&rft.epage=525&rft.pages=522-525&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2019.2899100&rft_dat=%3Cproquest_ieee_%3E2203400745%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-8cc99bec421aadffe31ea9aebd157192c6675d1e32e7d7b7ca95980be163d4983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2203400745&rft_id=info:pmid/&rft_ieee_id=8641367&rfr_iscdi=true