Loading…
Impedance Spectroscopy Based on Linear System Identification
Impedance spectroscopy is a commonly used measurement technique for electrical characterization of a sample under test over a wide frequency range. Most measurement methods employ a sine wave excitation generator, which implies a point-by-point frequency sweep and a complex readout architecture. Thi...
Saved in:
Published in: | IEEE transactions on biomedical circuits and systems 2019-04, Vol.13 (2), p.396-402 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Impedance spectroscopy is a commonly used measurement technique for electrical characterization of a sample under test over a wide frequency range. Most measurement methods employ a sine wave excitation generator, which implies a point-by-point frequency sweep and a complex readout architecture. This paper presents a fast, wideband, measurement method for impedance spectroscopy based on linear system identification. The main advantage of the proposed method is the low hardware complexity, which consists of a three-level pulse waveform, an inverting voltage amplifier, and a general purpose analog-to-digital converter (ADC). A proof-of-concept prototype, which is implemented with off-the-shelf components, achieves an estimation fit of approximately 96%. The prototype operation is validated electrically using known RC component values and tested in real application conditions. |
---|---|
ISSN: | 1932-4545 1940-9990 1940-9990 |
DOI: | 10.1109/TBCAS.2019.2900584 |