Loading…
Impedance Spectroscopy Based on Linear System Identification
Impedance spectroscopy is a commonly used measurement technique for electrical characterization of a sample under test over a wide frequency range. Most measurement methods employ a sine wave excitation generator, which implies a point-by-point frequency sweep and a complex readout architecture. Thi...
Saved in:
Published in: | IEEE transactions on biomedical circuits and systems 2019-04, Vol.13 (2), p.396-402 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c433t-3659bd8395280700ce4e4467f1d67bc5e264de9d6feaad89811d6592958dfe6c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c433t-3659bd8395280700ce4e4467f1d67bc5e264de9d6feaad89811d6592958dfe6c3 |
container_end_page | 402 |
container_issue | 2 |
container_start_page | 396 |
container_title | IEEE transactions on biomedical circuits and systems |
container_volume | 13 |
creator | Ivanisevic, Nikola Rodriguez, Saul Rusu, Ana |
description | Impedance spectroscopy is a commonly used measurement technique for electrical characterization of a sample under test over a wide frequency range. Most measurement methods employ a sine wave excitation generator, which implies a point-by-point frequency sweep and a complex readout architecture. This paper presents a fast, wideband, measurement method for impedance spectroscopy based on linear system identification. The main advantage of the proposed method is the low hardware complexity, which consists of a three-level pulse waveform, an inverting voltage amplifier, and a general purpose analog-to-digital converter (ADC). A proof-of-concept prototype, which is implemented with off-the-shelf components, achieves an estimation fit of approximately 96%. The prototype operation is validated electrically using known RC component values and tested in real application conditions. |
doi_str_mv | 10.1109/TBCAS.2019.2900584 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8645649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8645649</ieee_id><sourcerecordid>2196853446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-3659bd8395280700ce4e4467f1d67bc5e264de9d6feaad89811d6592958dfe6c3</originalsourceid><addsrcrecordid>eNpd0U2P0zAQBmALgdhl4Q-AhCJx4ZLi73gkLt3yVakShy5cLdeegJcmzsaJUP89Li09cLIlPzMaz0vIS0YXjFF4d3e7Wm4XnDJYcKBUGfmIXDOQtAYA-vh4F7yWSqor8izn-0I0B_6UXAnagFTMXJP3627A4HqP1XZAP40p-zQcqluXMVSprzaxRzdW20OesKvWAfspttG7Kab-OXnSun3GF-fzhnz79PFu9aXefP28Xi03tZdCTLXQCnbBCFDc0IZSjxKl1E3Lgm52XiHXMiAE3aJzwYBh5UEBB2VCi9qLG1Kf-ubfOMw7O4yxc-PBJhfth_h9adP4w_6aflouZaOa4t-e_DCmhxnzZLuYPe73rsc0Z8uZUUqD0KLQN__R-zSPfflNUaCNEmXSovhJ-bKfPGJ7GYFRe8zC_s3CHrOw5yxK0etz63nXYbiU_Ft-Aa9OICLi5dloqbQE8QfHRYwX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2196853446</pqid></control><display><type>article</type><title>Impedance Spectroscopy Based on Linear System Identification</title><source>IEEE Xplore (Online service)</source><creator>Ivanisevic, Nikola ; Rodriguez, Saul ; Rusu, Ana</creator><creatorcontrib>Ivanisevic, Nikola ; Rodriguez, Saul ; Rusu, Ana</creatorcontrib><description>Impedance spectroscopy is a commonly used measurement technique for electrical characterization of a sample under test over a wide frequency range. Most measurement methods employ a sine wave excitation generator, which implies a point-by-point frequency sweep and a complex readout architecture. This paper presents a fast, wideband, measurement method for impedance spectroscopy based on linear system identification. The main advantage of the proposed method is the low hardware complexity, which consists of a three-level pulse waveform, an inverting voltage amplifier, and a general purpose analog-to-digital converter (ADC). A proof-of-concept prototype, which is implemented with off-the-shelf components, achieves an estimation fit of approximately 96%. The prototype operation is validated electrically using known RC component values and tested in real application conditions.</description><identifier>ISSN: 1932-4545</identifier><identifier>ISSN: 1940-9990</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2019.2900584</identifier><identifier>PMID: 30794518</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>adaptive filtering ; Analog to digital conversion ; Analog to digital converters ; ARX ; Biomedical measurement ; Broadband ; Calibration ; Complexity ; Cost function ; Dielectric Spectroscopy ; Electrical Engineering ; Electrical properties ; Elektro- och systemteknik ; Frequency ranges ; Humans ; IIR filter ; Impedance ; Impedance measurement ; Impedance spectroscopy ; Mathematical model ; Measurement methods ; Measurement techniques ; Prototypes ; pseudo-random waveform ; Rangefinding ; Signal Processing, Computer-Assisted ; Sine waves ; Skin Physiological Phenomena ; Spectroscopic analysis ; Spectroscopy ; Spectrum analysis ; System identification ; Time Factors ; Voltage amplifiers ; Wave excitation</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2019-04, Vol.13 (2), p.396-402</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-3659bd8395280700ce4e4467f1d67bc5e264de9d6feaad89811d6592958dfe6c3</citedby><cites>FETCH-LOGICAL-c433t-3659bd8395280700ce4e4467f1d67bc5e264de9d6feaad89811d6592958dfe6c3</cites><orcidid>0000-0003-3802-7834 ; 0000-0002-9862-8255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8645649$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30794518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-244757$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ivanisevic, Nikola</creatorcontrib><creatorcontrib>Rodriguez, Saul</creatorcontrib><creatorcontrib>Rusu, Ana</creatorcontrib><title>Impedance Spectroscopy Based on Linear System Identification</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>Impedance spectroscopy is a commonly used measurement technique for electrical characterization of a sample under test over a wide frequency range. Most measurement methods employ a sine wave excitation generator, which implies a point-by-point frequency sweep and a complex readout architecture. This paper presents a fast, wideband, measurement method for impedance spectroscopy based on linear system identification. The main advantage of the proposed method is the low hardware complexity, which consists of a three-level pulse waveform, an inverting voltage amplifier, and a general purpose analog-to-digital converter (ADC). A proof-of-concept prototype, which is implemented with off-the-shelf components, achieves an estimation fit of approximately 96%. The prototype operation is validated electrically using known RC component values and tested in real application conditions.</description><subject>adaptive filtering</subject><subject>Analog to digital conversion</subject><subject>Analog to digital converters</subject><subject>ARX</subject><subject>Biomedical measurement</subject><subject>Broadband</subject><subject>Calibration</subject><subject>Complexity</subject><subject>Cost function</subject><subject>Dielectric Spectroscopy</subject><subject>Electrical Engineering</subject><subject>Electrical properties</subject><subject>Elektro- och systemteknik</subject><subject>Frequency ranges</subject><subject>Humans</subject><subject>IIR filter</subject><subject>Impedance</subject><subject>Impedance measurement</subject><subject>Impedance spectroscopy</subject><subject>Mathematical model</subject><subject>Measurement methods</subject><subject>Measurement techniques</subject><subject>Prototypes</subject><subject>pseudo-random waveform</subject><subject>Rangefinding</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Sine waves</subject><subject>Skin Physiological Phenomena</subject><subject>Spectroscopic analysis</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>System identification</subject><subject>Time Factors</subject><subject>Voltage amplifiers</subject><subject>Wave excitation</subject><issn>1932-4545</issn><issn>1940-9990</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpd0U2P0zAQBmALgdhl4Q-AhCJx4ZLi73gkLt3yVakShy5cLdeegJcmzsaJUP89Li09cLIlPzMaz0vIS0YXjFF4d3e7Wm4XnDJYcKBUGfmIXDOQtAYA-vh4F7yWSqor8izn-0I0B_6UXAnagFTMXJP3627A4HqP1XZAP40p-zQcqluXMVSprzaxRzdW20OesKvWAfspttG7Kab-OXnSun3GF-fzhnz79PFu9aXefP28Xi03tZdCTLXQCnbBCFDc0IZSjxKl1E3Lgm52XiHXMiAE3aJzwYBh5UEBB2VCi9qLG1Kf-ubfOMw7O4yxc-PBJhfth_h9adP4w_6aflouZaOa4t-e_DCmhxnzZLuYPe73rsc0Z8uZUUqD0KLQN__R-zSPfflNUaCNEmXSovhJ-bKfPGJ7GYFRe8zC_s3CHrOw5yxK0etz63nXYbiU_Ft-Aa9OICLi5dloqbQE8QfHRYwX</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Ivanisevic, Nikola</creator><creator>Rodriguez, Saul</creator><creator>Rusu, Ana</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0003-3802-7834</orcidid><orcidid>https://orcid.org/0000-0002-9862-8255</orcidid></search><sort><creationdate>20190401</creationdate><title>Impedance Spectroscopy Based on Linear System Identification</title><author>Ivanisevic, Nikola ; Rodriguez, Saul ; Rusu, Ana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-3659bd8395280700ce4e4467f1d67bc5e264de9d6feaad89811d6592958dfe6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>adaptive filtering</topic><topic>Analog to digital conversion</topic><topic>Analog to digital converters</topic><topic>ARX</topic><topic>Biomedical measurement</topic><topic>Broadband</topic><topic>Calibration</topic><topic>Complexity</topic><topic>Cost function</topic><topic>Dielectric Spectroscopy</topic><topic>Electrical Engineering</topic><topic>Electrical properties</topic><topic>Elektro- och systemteknik</topic><topic>Frequency ranges</topic><topic>Humans</topic><topic>IIR filter</topic><topic>Impedance</topic><topic>Impedance measurement</topic><topic>Impedance spectroscopy</topic><topic>Mathematical model</topic><topic>Measurement methods</topic><topic>Measurement techniques</topic><topic>Prototypes</topic><topic>pseudo-random waveform</topic><topic>Rangefinding</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Sine waves</topic><topic>Skin Physiological Phenomena</topic><topic>Spectroscopic analysis</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>System identification</topic><topic>Time Factors</topic><topic>Voltage amplifiers</topic><topic>Wave excitation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivanisevic, Nikola</creatorcontrib><creatorcontrib>Rodriguez, Saul</creatorcontrib><creatorcontrib>Rusu, Ana</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanisevic, Nikola</au><au>Rodriguez, Saul</au><au>Rusu, Ana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impedance Spectroscopy Based on Linear System Identification</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>13</volume><issue>2</issue><spage>396</spage><epage>402</epage><pages>396-402</pages><issn>1932-4545</issn><issn>1940-9990</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>Impedance spectroscopy is a commonly used measurement technique for electrical characterization of a sample under test over a wide frequency range. Most measurement methods employ a sine wave excitation generator, which implies a point-by-point frequency sweep and a complex readout architecture. This paper presents a fast, wideband, measurement method for impedance spectroscopy based on linear system identification. The main advantage of the proposed method is the low hardware complexity, which consists of a three-level pulse waveform, an inverting voltage amplifier, and a general purpose analog-to-digital converter (ADC). A proof-of-concept prototype, which is implemented with off-the-shelf components, achieves an estimation fit of approximately 96%. The prototype operation is validated electrically using known RC component values and tested in real application conditions.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30794518</pmid><doi>10.1109/TBCAS.2019.2900584</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3802-7834</orcidid><orcidid>https://orcid.org/0000-0002-9862-8255</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-4545 |
ispartof | IEEE transactions on biomedical circuits and systems, 2019-04, Vol.13 (2), p.396-402 |
issn | 1932-4545 1940-9990 1940-9990 |
language | eng |
recordid | cdi_ieee_primary_8645649 |
source | IEEE Xplore (Online service) |
subjects | adaptive filtering Analog to digital conversion Analog to digital converters ARX Biomedical measurement Broadband Calibration Complexity Cost function Dielectric Spectroscopy Electrical Engineering Electrical properties Elektro- och systemteknik Frequency ranges Humans IIR filter Impedance Impedance measurement Impedance spectroscopy Mathematical model Measurement methods Measurement techniques Prototypes pseudo-random waveform Rangefinding Signal Processing, Computer-Assisted Sine waves Skin Physiological Phenomena Spectroscopic analysis Spectroscopy Spectrum analysis System identification Time Factors Voltage amplifiers Wave excitation |
title | Impedance Spectroscopy Based on Linear System Identification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A24%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impedance%20Spectroscopy%20Based%20on%20Linear%20System%20Identification&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Ivanisevic,%20Nikola&rft.date=2019-04-01&rft.volume=13&rft.issue=2&rft.spage=396&rft.epage=402&rft.pages=396-402&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2019.2900584&rft_dat=%3Cproquest_ieee_%3E2196853446%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c433t-3659bd8395280700ce4e4467f1d67bc5e264de9d6feaad89811d6592958dfe6c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2196853446&rft_id=info:pmid/30794518&rft_ieee_id=8645649&rfr_iscdi=true |