Loading…

Impedance Spectroscopy Based on Linear System Identification

Impedance spectroscopy is a commonly used measurement technique for electrical characterization of a sample under test over a wide frequency range. Most measurement methods employ a sine wave excitation generator, which implies a point-by-point frequency sweep and a complex readout architecture. Thi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical circuits and systems 2019-04, Vol.13 (2), p.396-402
Main Authors: Ivanisevic, Nikola, Rodriguez, Saul, Rusu, Ana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c433t-3659bd8395280700ce4e4467f1d67bc5e264de9d6feaad89811d6592958dfe6c3
cites cdi_FETCH-LOGICAL-c433t-3659bd8395280700ce4e4467f1d67bc5e264de9d6feaad89811d6592958dfe6c3
container_end_page 402
container_issue 2
container_start_page 396
container_title IEEE transactions on biomedical circuits and systems
container_volume 13
creator Ivanisevic, Nikola
Rodriguez, Saul
Rusu, Ana
description Impedance spectroscopy is a commonly used measurement technique for electrical characterization of a sample under test over a wide frequency range. Most measurement methods employ a sine wave excitation generator, which implies a point-by-point frequency sweep and a complex readout architecture. This paper presents a fast, wideband, measurement method for impedance spectroscopy based on linear system identification. The main advantage of the proposed method is the low hardware complexity, which consists of a three-level pulse waveform, an inverting voltage amplifier, and a general purpose analog-to-digital converter (ADC). A proof-of-concept prototype, which is implemented with off-the-shelf components, achieves an estimation fit of approximately 96%. The prototype operation is validated electrically using known RC component values and tested in real application conditions.
doi_str_mv 10.1109/TBCAS.2019.2900584
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8645649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8645649</ieee_id><sourcerecordid>2196853446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-3659bd8395280700ce4e4467f1d67bc5e264de9d6feaad89811d6592958dfe6c3</originalsourceid><addsrcrecordid>eNpd0U2P0zAQBmALgdhl4Q-AhCJx4ZLi73gkLt3yVakShy5cLdeegJcmzsaJUP89Li09cLIlPzMaz0vIS0YXjFF4d3e7Wm4XnDJYcKBUGfmIXDOQtAYA-vh4F7yWSqor8izn-0I0B_6UXAnagFTMXJP3627A4HqP1XZAP40p-zQcqluXMVSprzaxRzdW20OesKvWAfspttG7Kab-OXnSun3GF-fzhnz79PFu9aXefP28Xi03tZdCTLXQCnbBCFDc0IZSjxKl1E3Lgm52XiHXMiAE3aJzwYBh5UEBB2VCi9qLG1Kf-ubfOMw7O4yxc-PBJhfth_h9adP4w_6aflouZaOa4t-e_DCmhxnzZLuYPe73rsc0Z8uZUUqD0KLQN__R-zSPfflNUaCNEmXSovhJ-bKfPGJ7GYFRe8zC_s3CHrOw5yxK0etz63nXYbiU_Ft-Aa9OICLi5dloqbQE8QfHRYwX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2196853446</pqid></control><display><type>article</type><title>Impedance Spectroscopy Based on Linear System Identification</title><source>IEEE Xplore (Online service)</source><creator>Ivanisevic, Nikola ; Rodriguez, Saul ; Rusu, Ana</creator><creatorcontrib>Ivanisevic, Nikola ; Rodriguez, Saul ; Rusu, Ana</creatorcontrib><description>Impedance spectroscopy is a commonly used measurement technique for electrical characterization of a sample under test over a wide frequency range. Most measurement methods employ a sine wave excitation generator, which implies a point-by-point frequency sweep and a complex readout architecture. This paper presents a fast, wideband, measurement method for impedance spectroscopy based on linear system identification. The main advantage of the proposed method is the low hardware complexity, which consists of a three-level pulse waveform, an inverting voltage amplifier, and a general purpose analog-to-digital converter (ADC). A proof-of-concept prototype, which is implemented with off-the-shelf components, achieves an estimation fit of approximately 96%. The prototype operation is validated electrically using known RC component values and tested in real application conditions.</description><identifier>ISSN: 1932-4545</identifier><identifier>ISSN: 1940-9990</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2019.2900584</identifier><identifier>PMID: 30794518</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>adaptive filtering ; Analog to digital conversion ; Analog to digital converters ; ARX ; Biomedical measurement ; Broadband ; Calibration ; Complexity ; Cost function ; Dielectric Spectroscopy ; Electrical Engineering ; Electrical properties ; Elektro- och systemteknik ; Frequency ranges ; Humans ; IIR filter ; Impedance ; Impedance measurement ; Impedance spectroscopy ; Mathematical model ; Measurement methods ; Measurement techniques ; Prototypes ; pseudo-random waveform ; Rangefinding ; Signal Processing, Computer-Assisted ; Sine waves ; Skin Physiological Phenomena ; Spectroscopic analysis ; Spectroscopy ; Spectrum analysis ; System identification ; Time Factors ; Voltage amplifiers ; Wave excitation</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2019-04, Vol.13 (2), p.396-402</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-3659bd8395280700ce4e4467f1d67bc5e264de9d6feaad89811d6592958dfe6c3</citedby><cites>FETCH-LOGICAL-c433t-3659bd8395280700ce4e4467f1d67bc5e264de9d6feaad89811d6592958dfe6c3</cites><orcidid>0000-0003-3802-7834 ; 0000-0002-9862-8255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8645649$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30794518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-244757$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ivanisevic, Nikola</creatorcontrib><creatorcontrib>Rodriguez, Saul</creatorcontrib><creatorcontrib>Rusu, Ana</creatorcontrib><title>Impedance Spectroscopy Based on Linear System Identification</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>Impedance spectroscopy is a commonly used measurement technique for electrical characterization of a sample under test over a wide frequency range. Most measurement methods employ a sine wave excitation generator, which implies a point-by-point frequency sweep and a complex readout architecture. This paper presents a fast, wideband, measurement method for impedance spectroscopy based on linear system identification. The main advantage of the proposed method is the low hardware complexity, which consists of a three-level pulse waveform, an inverting voltage amplifier, and a general purpose analog-to-digital converter (ADC). A proof-of-concept prototype, which is implemented with off-the-shelf components, achieves an estimation fit of approximately 96%. The prototype operation is validated electrically using known RC component values and tested in real application conditions.</description><subject>adaptive filtering</subject><subject>Analog to digital conversion</subject><subject>Analog to digital converters</subject><subject>ARX</subject><subject>Biomedical measurement</subject><subject>Broadband</subject><subject>Calibration</subject><subject>Complexity</subject><subject>Cost function</subject><subject>Dielectric Spectroscopy</subject><subject>Electrical Engineering</subject><subject>Electrical properties</subject><subject>Elektro- och systemteknik</subject><subject>Frequency ranges</subject><subject>Humans</subject><subject>IIR filter</subject><subject>Impedance</subject><subject>Impedance measurement</subject><subject>Impedance spectroscopy</subject><subject>Mathematical model</subject><subject>Measurement methods</subject><subject>Measurement techniques</subject><subject>Prototypes</subject><subject>pseudo-random waveform</subject><subject>Rangefinding</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Sine waves</subject><subject>Skin Physiological Phenomena</subject><subject>Spectroscopic analysis</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>System identification</subject><subject>Time Factors</subject><subject>Voltage amplifiers</subject><subject>Wave excitation</subject><issn>1932-4545</issn><issn>1940-9990</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpd0U2P0zAQBmALgdhl4Q-AhCJx4ZLi73gkLt3yVakShy5cLdeegJcmzsaJUP89Li09cLIlPzMaz0vIS0YXjFF4d3e7Wm4XnDJYcKBUGfmIXDOQtAYA-vh4F7yWSqor8izn-0I0B_6UXAnagFTMXJP3627A4HqP1XZAP40p-zQcqluXMVSprzaxRzdW20OesKvWAfspttG7Kab-OXnSun3GF-fzhnz79PFu9aXefP28Xi03tZdCTLXQCnbBCFDc0IZSjxKl1E3Lgm52XiHXMiAE3aJzwYBh5UEBB2VCi9qLG1Kf-ubfOMw7O4yxc-PBJhfth_h9adP4w_6aflouZaOa4t-e_DCmhxnzZLuYPe73rsc0Z8uZUUqD0KLQN__R-zSPfflNUaCNEmXSovhJ-bKfPGJ7GYFRe8zC_s3CHrOw5yxK0etz63nXYbiU_Ft-Aa9OICLi5dloqbQE8QfHRYwX</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Ivanisevic, Nikola</creator><creator>Rodriguez, Saul</creator><creator>Rusu, Ana</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0003-3802-7834</orcidid><orcidid>https://orcid.org/0000-0002-9862-8255</orcidid></search><sort><creationdate>20190401</creationdate><title>Impedance Spectroscopy Based on Linear System Identification</title><author>Ivanisevic, Nikola ; Rodriguez, Saul ; Rusu, Ana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-3659bd8395280700ce4e4467f1d67bc5e264de9d6feaad89811d6592958dfe6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>adaptive filtering</topic><topic>Analog to digital conversion</topic><topic>Analog to digital converters</topic><topic>ARX</topic><topic>Biomedical measurement</topic><topic>Broadband</topic><topic>Calibration</topic><topic>Complexity</topic><topic>Cost function</topic><topic>Dielectric Spectroscopy</topic><topic>Electrical Engineering</topic><topic>Electrical properties</topic><topic>Elektro- och systemteknik</topic><topic>Frequency ranges</topic><topic>Humans</topic><topic>IIR filter</topic><topic>Impedance</topic><topic>Impedance measurement</topic><topic>Impedance spectroscopy</topic><topic>Mathematical model</topic><topic>Measurement methods</topic><topic>Measurement techniques</topic><topic>Prototypes</topic><topic>pseudo-random waveform</topic><topic>Rangefinding</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Sine waves</topic><topic>Skin Physiological Phenomena</topic><topic>Spectroscopic analysis</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>System identification</topic><topic>Time Factors</topic><topic>Voltage amplifiers</topic><topic>Wave excitation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivanisevic, Nikola</creatorcontrib><creatorcontrib>Rodriguez, Saul</creatorcontrib><creatorcontrib>Rusu, Ana</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanisevic, Nikola</au><au>Rodriguez, Saul</au><au>Rusu, Ana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impedance Spectroscopy Based on Linear System Identification</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>13</volume><issue>2</issue><spage>396</spage><epage>402</epage><pages>396-402</pages><issn>1932-4545</issn><issn>1940-9990</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>Impedance spectroscopy is a commonly used measurement technique for electrical characterization of a sample under test over a wide frequency range. Most measurement methods employ a sine wave excitation generator, which implies a point-by-point frequency sweep and a complex readout architecture. This paper presents a fast, wideband, measurement method for impedance spectroscopy based on linear system identification. The main advantage of the proposed method is the low hardware complexity, which consists of a three-level pulse waveform, an inverting voltage amplifier, and a general purpose analog-to-digital converter (ADC). A proof-of-concept prototype, which is implemented with off-the-shelf components, achieves an estimation fit of approximately 96%. The prototype operation is validated electrically using known RC component values and tested in real application conditions.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30794518</pmid><doi>10.1109/TBCAS.2019.2900584</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3802-7834</orcidid><orcidid>https://orcid.org/0000-0002-9862-8255</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-4545
ispartof IEEE transactions on biomedical circuits and systems, 2019-04, Vol.13 (2), p.396-402
issn 1932-4545
1940-9990
1940-9990
language eng
recordid cdi_ieee_primary_8645649
source IEEE Xplore (Online service)
subjects adaptive filtering
Analog to digital conversion
Analog to digital converters
ARX
Biomedical measurement
Broadband
Calibration
Complexity
Cost function
Dielectric Spectroscopy
Electrical Engineering
Electrical properties
Elektro- och systemteknik
Frequency ranges
Humans
IIR filter
Impedance
Impedance measurement
Impedance spectroscopy
Mathematical model
Measurement methods
Measurement techniques
Prototypes
pseudo-random waveform
Rangefinding
Signal Processing, Computer-Assisted
Sine waves
Skin Physiological Phenomena
Spectroscopic analysis
Spectroscopy
Spectrum analysis
System identification
Time Factors
Voltage amplifiers
Wave excitation
title Impedance Spectroscopy Based on Linear System Identification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A24%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impedance%20Spectroscopy%20Based%20on%20Linear%20System%20Identification&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Ivanisevic,%20Nikola&rft.date=2019-04-01&rft.volume=13&rft.issue=2&rft.spage=396&rft.epage=402&rft.pages=396-402&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2019.2900584&rft_dat=%3Cproquest_ieee_%3E2196853446%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c433t-3659bd8395280700ce4e4467f1d67bc5e264de9d6feaad89811d6592958dfe6c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2196853446&rft_id=info:pmid/30794518&rft_ieee_id=8645649&rfr_iscdi=true