Loading…
Dynamic SDN Controller Placement in a LEO Constellation Satellite Network
Software Defined Networking (SDN) has been identified as a potential approach to achieve a more flexible control and management of the traditional satellite systems and enhance the opportunities for future services including the possibility of a hybrid satellite/terrestrial network. Given the renewe...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Software Defined Networking (SDN) has been identified as a potential approach to achieve a more flexible control and management of the traditional satellite systems and enhance the opportunities for future services including the possibility of a hybrid satellite/terrestrial network. Given the renewed interest towards Low-Earth-Orbit (LEO) constellations, an interesting research topic is the design of a suitable network management model taking into account user specific metrics. In this paper, we address this issue while investigating the use-case scenario of an SDN-enabled satellite space segment. A Dynamic Controller Placement Problem (DCPP) is considered for a LEO constellation where the traffic demands change dynamically based on users' geographical position and time zone. To this end, we develop a mathematical model and formulate it as an Integer Linear Programming (ILP) guaranteeing an optimal controller placement and satellite-to-controller assignment minimizing the average flow setup time with respect to the traffic dynamics. We show results for the DCPP regarding the average flow setup time. Furthermore, a comparison with respect to the static approach is investigated and the proposed SDN-enabled LEO constellation architecture is compared with alternative architectures proposed in the state of the art. |
---|---|
ISSN: | 2576-6813 |
DOI: | 10.1109/GLOCOM.2018.8647843 |