Loading…
Structured Sparsity Learning Based Multiuser Detection in Massive-Device Multiple Access
In this work, we study the non-time-slotted massive-device multiple access (MaDMA) problem where massive user devices transmit sporadic data to a multi-antenna base station (BS). We develop a structured sparsity learning based multiuser detection (SSL-MUD) scheme. By exploiting the structured sparsi...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 7 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Tian Ding Xiaojun Yuan Soung Chang Liew |
description | In this work, we study the non-time-slotted massive-device multiple access (MaDMA) problem where massive user devices transmit sporadic data to a multi-antenna base station (BS). We develop a structured sparsity learning based multiuser detection (SSL-MUD) scheme. By exploiting the structured sparsity naturally embedded in user signals, our SSL-MUD scheme is able to blindly detect the user packets without any prior knowledge of the user activity state (UAS) and the channel state information (CSI), and hence significantly reduces the transmission overhead. For the blind signal detection at the BS, we put forth the turbo bilinear generalized approximate message passing (Turbo-BiG-AMP) algorithm. Simulation results demonstrate that the Turbo-BiG- AMP algorithm significantly outperforms the existing compressed sensing based approach and achieves a performance comparable to that of the oracle linear minimum mean-square error (Oracle- LMMSE) algorithm (which assumes perfect knowledge of UAS and CSI at the BS). |
doi_str_mv | 10.1109/GLOCOM.2018.8648017 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8648017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8648017</ieee_id><sourcerecordid>8648017</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f53babe37276a06b960002c3f0fdbb34ab34243f0d4f2780195898288b83ea2c3</originalsourceid><addsrcrecordid>eNotUF1LwzAUjYLgnPsFe8kfaM1Hm6SPs9MptPRhCr6NNL2VSK0lSQf792ZsD5fD-eBy7kVoTUlKKSmedlVTNnXKCFWpEpkiVN6gB5rzSCST_BYtWC5FIhTl92jl_Q8hhAnFo7tAX_vgZhNmBx3eT9p5G064Au1GO37jZ-2jXs9DsLMHh7cQwAT7N2I74lp7b4-QbOFoDVxS0wB4Ywx4_4juej14WF1xiT5fXz7Kt6Rqdu_lpkoslXlI-py3ugUemwpNRFuIczvDe9J3bcszHYdlkXZZz2Q8rshVoZhSreKgY3CJ1pe9FgAOk7O_2p0O10fwfzpSUrY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Structured Sparsity Learning Based Multiuser Detection in Massive-Device Multiple Access</title><source>IEEE Xplore All Conference Series</source><creator>Tian Ding ; Xiaojun Yuan ; Soung Chang Liew</creator><creatorcontrib>Tian Ding ; Xiaojun Yuan ; Soung Chang Liew</creatorcontrib><description>In this work, we study the non-time-slotted massive-device multiple access (MaDMA) problem where massive user devices transmit sporadic data to a multi-antenna base station (BS). We develop a structured sparsity learning based multiuser detection (SSL-MUD) scheme. By exploiting the structured sparsity naturally embedded in user signals, our SSL-MUD scheme is able to blindly detect the user packets without any prior knowledge of the user activity state (UAS) and the channel state information (CSI), and hence significantly reduces the transmission overhead. For the blind signal detection at the BS, we put forth the turbo bilinear generalized approximate message passing (Turbo-BiG-AMP) algorithm. Simulation results demonstrate that the Turbo-BiG- AMP algorithm significantly outperforms the existing compressed sensing based approach and achieves a performance comparable to that of the oracle linear minimum mean-square error (Oracle- LMMSE) algorithm (which assumes perfect knowledge of UAS and CSI at the BS).</description><identifier>EISSN: 2576-6813</identifier><identifier>EISBN: 1538647273</identifier><identifier>EISBN: 9781538647271</identifier><identifier>DOI: 10.1109/GLOCOM.2018.8648017</identifier><language>eng</language><publisher>IEEE</publisher><subject>Antennas ; Approximation algorithms ; Channel estimation ; Decoding ; Message passing ; Multiuser detection ; Random variables</subject><ispartof>2018 IEEE Global Communications Conference (GLOBECOM), 2018, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8648017$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23906,23907,25115,27899,54527,54904</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8648017$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tian Ding</creatorcontrib><creatorcontrib>Xiaojun Yuan</creatorcontrib><creatorcontrib>Soung Chang Liew</creatorcontrib><title>Structured Sparsity Learning Based Multiuser Detection in Massive-Device Multiple Access</title><title>2018 IEEE Global Communications Conference (GLOBECOM)</title><addtitle>GLOCOM</addtitle><description>In this work, we study the non-time-slotted massive-device multiple access (MaDMA) problem where massive user devices transmit sporadic data to a multi-antenna base station (BS). We develop a structured sparsity learning based multiuser detection (SSL-MUD) scheme. By exploiting the structured sparsity naturally embedded in user signals, our SSL-MUD scheme is able to blindly detect the user packets without any prior knowledge of the user activity state (UAS) and the channel state information (CSI), and hence significantly reduces the transmission overhead. For the blind signal detection at the BS, we put forth the turbo bilinear generalized approximate message passing (Turbo-BiG-AMP) algorithm. Simulation results demonstrate that the Turbo-BiG- AMP algorithm significantly outperforms the existing compressed sensing based approach and achieves a performance comparable to that of the oracle linear minimum mean-square error (Oracle- LMMSE) algorithm (which assumes perfect knowledge of UAS and CSI at the BS).</description><subject>Antennas</subject><subject>Approximation algorithms</subject><subject>Channel estimation</subject><subject>Decoding</subject><subject>Message passing</subject><subject>Multiuser detection</subject><subject>Random variables</subject><issn>2576-6813</issn><isbn>1538647273</isbn><isbn>9781538647271</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUF1LwzAUjYLgnPsFe8kfaM1Hm6SPs9MptPRhCr6NNL2VSK0lSQf792ZsD5fD-eBy7kVoTUlKKSmedlVTNnXKCFWpEpkiVN6gB5rzSCST_BYtWC5FIhTl92jl_Q8hhAnFo7tAX_vgZhNmBx3eT9p5G064Au1GO37jZ-2jXs9DsLMHh7cQwAT7N2I74lp7b4-QbOFoDVxS0wB4Ywx4_4juej14WF1xiT5fXz7Kt6Rqdu_lpkoslXlI-py3ugUemwpNRFuIczvDe9J3bcszHYdlkXZZz2Q8rshVoZhSreKgY3CJ1pe9FgAOk7O_2p0O10fwfzpSUrY</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Tian Ding</creator><creator>Xiaojun Yuan</creator><creator>Soung Chang Liew</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201812</creationdate><title>Structured Sparsity Learning Based Multiuser Detection in Massive-Device Multiple Access</title><author>Tian Ding ; Xiaojun Yuan ; Soung Chang Liew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f53babe37276a06b960002c3f0fdbb34ab34243f0d4f2780195898288b83ea2c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antennas</topic><topic>Approximation algorithms</topic><topic>Channel estimation</topic><topic>Decoding</topic><topic>Message passing</topic><topic>Multiuser detection</topic><topic>Random variables</topic><toplevel>online_resources</toplevel><creatorcontrib>Tian Ding</creatorcontrib><creatorcontrib>Xiaojun Yuan</creatorcontrib><creatorcontrib>Soung Chang Liew</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tian Ding</au><au>Xiaojun Yuan</au><au>Soung Chang Liew</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Structured Sparsity Learning Based Multiuser Detection in Massive-Device Multiple Access</atitle><btitle>2018 IEEE Global Communications Conference (GLOBECOM)</btitle><stitle>GLOCOM</stitle><date>2018-12</date><risdate>2018</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><eissn>2576-6813</eissn><eisbn>1538647273</eisbn><eisbn>9781538647271</eisbn><abstract>In this work, we study the non-time-slotted massive-device multiple access (MaDMA) problem where massive user devices transmit sporadic data to a multi-antenna base station (BS). We develop a structured sparsity learning based multiuser detection (SSL-MUD) scheme. By exploiting the structured sparsity naturally embedded in user signals, our SSL-MUD scheme is able to blindly detect the user packets without any prior knowledge of the user activity state (UAS) and the channel state information (CSI), and hence significantly reduces the transmission overhead. For the blind signal detection at the BS, we put forth the turbo bilinear generalized approximate message passing (Turbo-BiG-AMP) algorithm. Simulation results demonstrate that the Turbo-BiG- AMP algorithm significantly outperforms the existing compressed sensing based approach and achieves a performance comparable to that of the oracle linear minimum mean-square error (Oracle- LMMSE) algorithm (which assumes perfect knowledge of UAS and CSI at the BS).</abstract><pub>IEEE</pub><doi>10.1109/GLOCOM.2018.8648017</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2576-6813 |
ispartof | 2018 IEEE Global Communications Conference (GLOBECOM), 2018, p.1-7 |
issn | 2576-6813 |
language | eng |
recordid | cdi_ieee_primary_8648017 |
source | IEEE Xplore All Conference Series |
subjects | Antennas Approximation algorithms Channel estimation Decoding Message passing Multiuser detection Random variables |
title | Structured Sparsity Learning Based Multiuser Detection in Massive-Device Multiple Access |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-03T16%3A55%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Structured%20Sparsity%20Learning%20Based%20Multiuser%20Detection%20in%20Massive-Device%20Multiple%20Access&rft.btitle=2018%20IEEE%20Global%20Communications%20Conference%20(GLOBECOM)&rft.au=Tian%20Ding&rft.date=2018-12&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.eissn=2576-6813&rft_id=info:doi/10.1109/GLOCOM.2018.8648017&rft.eisbn=1538647273&rft.eisbn_list=9781538647271&rft_dat=%3Cieee_CHZPO%3E8648017%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-f53babe37276a06b960002c3f0fdbb34ab34243f0d4f2780195898288b83ea2c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8648017&rfr_iscdi=true |