Loading…

Structured Sparsity Learning Based Multiuser Detection in Massive-Device Multiple Access

In this work, we study the non-time-slotted massive-device multiple access (MaDMA) problem where massive user devices transmit sporadic data to a multi-antenna base station (BS). We develop a structured sparsity learning based multiuser detection (SSL-MUD) scheme. By exploiting the structured sparsi...

Full description

Saved in:
Bibliographic Details
Main Authors: Tian Ding, Xiaojun Yuan, Soung Chang Liew
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7
container_issue
container_start_page 1
container_title
container_volume
creator Tian Ding
Xiaojun Yuan
Soung Chang Liew
description In this work, we study the non-time-slotted massive-device multiple access (MaDMA) problem where massive user devices transmit sporadic data to a multi-antenna base station (BS). We develop a structured sparsity learning based multiuser detection (SSL-MUD) scheme. By exploiting the structured sparsity naturally embedded in user signals, our SSL-MUD scheme is able to blindly detect the user packets without any prior knowledge of the user activity state (UAS) and the channel state information (CSI), and hence significantly reduces the transmission overhead. For the blind signal detection at the BS, we put forth the turbo bilinear generalized approximate message passing (Turbo-BiG-AMP) algorithm. Simulation results demonstrate that the Turbo-BiG- AMP algorithm significantly outperforms the existing compressed sensing based approach and achieves a performance comparable to that of the oracle linear minimum mean-square error (Oracle- LMMSE) algorithm (which assumes perfect knowledge of UAS and CSI at the BS).
doi_str_mv 10.1109/GLOCOM.2018.8648017
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8648017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8648017</ieee_id><sourcerecordid>8648017</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f53babe37276a06b960002c3f0fdbb34ab34243f0d4f2780195898288b83ea2c3</originalsourceid><addsrcrecordid>eNotUF1LwzAUjYLgnPsFe8kfaM1Hm6SPs9MptPRhCr6NNL2VSK0lSQf792ZsD5fD-eBy7kVoTUlKKSmedlVTNnXKCFWpEpkiVN6gB5rzSCST_BYtWC5FIhTl92jl_Q8hhAnFo7tAX_vgZhNmBx3eT9p5G064Au1GO37jZ-2jXs9DsLMHh7cQwAT7N2I74lp7b4-QbOFoDVxS0wB4Ywx4_4juej14WF1xiT5fXz7Kt6Rqdu_lpkoslXlI-py3ugUemwpNRFuIczvDe9J3bcszHYdlkXZZz2Q8rshVoZhSreKgY3CJ1pe9FgAOk7O_2p0O10fwfzpSUrY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Structured Sparsity Learning Based Multiuser Detection in Massive-Device Multiple Access</title><source>IEEE Xplore All Conference Series</source><creator>Tian Ding ; Xiaojun Yuan ; Soung Chang Liew</creator><creatorcontrib>Tian Ding ; Xiaojun Yuan ; Soung Chang Liew</creatorcontrib><description>In this work, we study the non-time-slotted massive-device multiple access (MaDMA) problem where massive user devices transmit sporadic data to a multi-antenna base station (BS). We develop a structured sparsity learning based multiuser detection (SSL-MUD) scheme. By exploiting the structured sparsity naturally embedded in user signals, our SSL-MUD scheme is able to blindly detect the user packets without any prior knowledge of the user activity state (UAS) and the channel state information (CSI), and hence significantly reduces the transmission overhead. For the blind signal detection at the BS, we put forth the turbo bilinear generalized approximate message passing (Turbo-BiG-AMP) algorithm. Simulation results demonstrate that the Turbo-BiG- AMP algorithm significantly outperforms the existing compressed sensing based approach and achieves a performance comparable to that of the oracle linear minimum mean-square error (Oracle- LMMSE) algorithm (which assumes perfect knowledge of UAS and CSI at the BS).</description><identifier>EISSN: 2576-6813</identifier><identifier>EISBN: 1538647273</identifier><identifier>EISBN: 9781538647271</identifier><identifier>DOI: 10.1109/GLOCOM.2018.8648017</identifier><language>eng</language><publisher>IEEE</publisher><subject>Antennas ; Approximation algorithms ; Channel estimation ; Decoding ; Message passing ; Multiuser detection ; Random variables</subject><ispartof>2018 IEEE Global Communications Conference (GLOBECOM), 2018, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8648017$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23906,23907,25115,27899,54527,54904</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8648017$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tian Ding</creatorcontrib><creatorcontrib>Xiaojun Yuan</creatorcontrib><creatorcontrib>Soung Chang Liew</creatorcontrib><title>Structured Sparsity Learning Based Multiuser Detection in Massive-Device Multiple Access</title><title>2018 IEEE Global Communications Conference (GLOBECOM)</title><addtitle>GLOCOM</addtitle><description>In this work, we study the non-time-slotted massive-device multiple access (MaDMA) problem where massive user devices transmit sporadic data to a multi-antenna base station (BS). We develop a structured sparsity learning based multiuser detection (SSL-MUD) scheme. By exploiting the structured sparsity naturally embedded in user signals, our SSL-MUD scheme is able to blindly detect the user packets without any prior knowledge of the user activity state (UAS) and the channel state information (CSI), and hence significantly reduces the transmission overhead. For the blind signal detection at the BS, we put forth the turbo bilinear generalized approximate message passing (Turbo-BiG-AMP) algorithm. Simulation results demonstrate that the Turbo-BiG- AMP algorithm significantly outperforms the existing compressed sensing based approach and achieves a performance comparable to that of the oracle linear minimum mean-square error (Oracle- LMMSE) algorithm (which assumes perfect knowledge of UAS and CSI at the BS).</description><subject>Antennas</subject><subject>Approximation algorithms</subject><subject>Channel estimation</subject><subject>Decoding</subject><subject>Message passing</subject><subject>Multiuser detection</subject><subject>Random variables</subject><issn>2576-6813</issn><isbn>1538647273</isbn><isbn>9781538647271</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUF1LwzAUjYLgnPsFe8kfaM1Hm6SPs9MptPRhCr6NNL2VSK0lSQf792ZsD5fD-eBy7kVoTUlKKSmedlVTNnXKCFWpEpkiVN6gB5rzSCST_BYtWC5FIhTl92jl_Q8hhAnFo7tAX_vgZhNmBx3eT9p5G064Au1GO37jZ-2jXs9DsLMHh7cQwAT7N2I74lp7b4-QbOFoDVxS0wB4Ywx4_4juej14WF1xiT5fXz7Kt6Rqdu_lpkoslXlI-py3ugUemwpNRFuIczvDe9J3bcszHYdlkXZZz2Q8rshVoZhSreKgY3CJ1pe9FgAOk7O_2p0O10fwfzpSUrY</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Tian Ding</creator><creator>Xiaojun Yuan</creator><creator>Soung Chang Liew</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201812</creationdate><title>Structured Sparsity Learning Based Multiuser Detection in Massive-Device Multiple Access</title><author>Tian Ding ; Xiaojun Yuan ; Soung Chang Liew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f53babe37276a06b960002c3f0fdbb34ab34243f0d4f2780195898288b83ea2c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antennas</topic><topic>Approximation algorithms</topic><topic>Channel estimation</topic><topic>Decoding</topic><topic>Message passing</topic><topic>Multiuser detection</topic><topic>Random variables</topic><toplevel>online_resources</toplevel><creatorcontrib>Tian Ding</creatorcontrib><creatorcontrib>Xiaojun Yuan</creatorcontrib><creatorcontrib>Soung Chang Liew</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tian Ding</au><au>Xiaojun Yuan</au><au>Soung Chang Liew</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Structured Sparsity Learning Based Multiuser Detection in Massive-Device Multiple Access</atitle><btitle>2018 IEEE Global Communications Conference (GLOBECOM)</btitle><stitle>GLOCOM</stitle><date>2018-12</date><risdate>2018</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><eissn>2576-6813</eissn><eisbn>1538647273</eisbn><eisbn>9781538647271</eisbn><abstract>In this work, we study the non-time-slotted massive-device multiple access (MaDMA) problem where massive user devices transmit sporadic data to a multi-antenna base station (BS). We develop a structured sparsity learning based multiuser detection (SSL-MUD) scheme. By exploiting the structured sparsity naturally embedded in user signals, our SSL-MUD scheme is able to blindly detect the user packets without any prior knowledge of the user activity state (UAS) and the channel state information (CSI), and hence significantly reduces the transmission overhead. For the blind signal detection at the BS, we put forth the turbo bilinear generalized approximate message passing (Turbo-BiG-AMP) algorithm. Simulation results demonstrate that the Turbo-BiG- AMP algorithm significantly outperforms the existing compressed sensing based approach and achieves a performance comparable to that of the oracle linear minimum mean-square error (Oracle- LMMSE) algorithm (which assumes perfect knowledge of UAS and CSI at the BS).</abstract><pub>IEEE</pub><doi>10.1109/GLOCOM.2018.8648017</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2576-6813
ispartof 2018 IEEE Global Communications Conference (GLOBECOM), 2018, p.1-7
issn 2576-6813
language eng
recordid cdi_ieee_primary_8648017
source IEEE Xplore All Conference Series
subjects Antennas
Approximation algorithms
Channel estimation
Decoding
Message passing
Multiuser detection
Random variables
title Structured Sparsity Learning Based Multiuser Detection in Massive-Device Multiple Access
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-03T16%3A55%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Structured%20Sparsity%20Learning%20Based%20Multiuser%20Detection%20in%20Massive-Device%20Multiple%20Access&rft.btitle=2018%20IEEE%20Global%20Communications%20Conference%20(GLOBECOM)&rft.au=Tian%20Ding&rft.date=2018-12&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.eissn=2576-6813&rft_id=info:doi/10.1109/GLOCOM.2018.8648017&rft.eisbn=1538647273&rft.eisbn_list=9781538647271&rft_dat=%3Cieee_CHZPO%3E8648017%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-f53babe37276a06b960002c3f0fdbb34ab34243f0d4f2780195898288b83ea2c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8648017&rfr_iscdi=true