Loading…

Deep-Learning-Based Signal Detection for Banded Linear Systems

Motivated by the recent advances in deep learning, we propose to design high-accuracy low-complexity signal detectors for banded linear systems based on deep neural networks (DNNs). We first design a fully connected DNN for signal detection. Then, to deal with the curse of dimensionality, we propose...

Full description

Saved in:
Bibliographic Details
Main Authors: Congmin Fan, Xiaojun Yuan, Zhang, Ying-Jun Angela
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Congmin Fan
Xiaojun Yuan
Zhang, Ying-Jun Angela
description Motivated by the recent advances in deep learning, we propose to design high-accuracy low-complexity signal detectors for banded linear systems based on deep neural networks (DNNs). We first design a fully connected DNN for signal detection. Then, to deal with the curse of dimensionality, we propose a novel convolutional neural network (CNN) based on the banded structure of the channel matrix. From simulations, we observe that the proposed CNN outperforms the fully connected DNN in both accuracy and computational time. Moreover, CNN is more robust for the extension to channel matrices with a large size or a wide band. We also run extensive numerical experiments to show that both fully connected DNN and CNN perform much better than existing detectors with comparable complexity.
doi_str_mv 10.1109/GLOCOM.2018.8648123
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8648123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8648123</ieee_id><sourcerecordid>8648123</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-84c1b5dee4e31a0633e6b33f18fb520f63eee28606c5c62fb9b62e3f47b580023</originalsourceid><addsrcrecordid>eNotj0FrAjEUhNNCodb6C7zsH8g2L2-TjZdC1WoLW_Zge5Zk90VSNMpmL_77BuppGOZjmGFsDqIEEIuXbdOu2q9SCjCl0ZUBiXfsCRRmU8sa79lEqlpzbQAf2SylXyGE1AZzOmGva6ILb8gOMcQDX9pEfbELh2iPxZpG6sZwjoU_D8XSxj5nTYgZLnbXNNIpPbMHb4-JZjedsp_N-_fqgzft9nP11vAAtRq5qTpwqieqCMEKjUjaIXow3ikpvEYikkYL3alOS-8WTktCX9VOmbwWp2z-3xsyuL8M4WSH6_52F_8ATUpIhA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Deep-Learning-Based Signal Detection for Banded Linear Systems</title><source>IEEE Xplore All Conference Series</source><creator>Congmin Fan ; Xiaojun Yuan ; Zhang, Ying-Jun Angela</creator><creatorcontrib>Congmin Fan ; Xiaojun Yuan ; Zhang, Ying-Jun Angela</creatorcontrib><description>Motivated by the recent advances in deep learning, we propose to design high-accuracy low-complexity signal detectors for banded linear systems based on deep neural networks (DNNs). We first design a fully connected DNN for signal detection. Then, to deal with the curse of dimensionality, we propose a novel convolutional neural network (CNN) based on the banded structure of the channel matrix. From simulations, we observe that the proposed CNN outperforms the fully connected DNN in both accuracy and computational time. Moreover, CNN is more robust for the extension to channel matrices with a large size or a wide band. We also run extensive numerical experiments to show that both fully connected DNN and CNN perform much better than existing detectors with comparable complexity.</description><identifier>EISSN: 2576-6813</identifier><identifier>EISBN: 1538647273</identifier><identifier>EISBN: 9781538647271</identifier><identifier>DOI: 10.1109/GLOCOM.2018.8648123</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convolution ; Deep learning ; Detectors ; Feature extraction ; Neural networks ; Neurons ; Signal detection</subject><ispartof>2018 IEEE Global Communications Conference (GLOBECOM), 2018, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8648123$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23929,23930,25139,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8648123$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Congmin Fan</creatorcontrib><creatorcontrib>Xiaojun Yuan</creatorcontrib><creatorcontrib>Zhang, Ying-Jun Angela</creatorcontrib><title>Deep-Learning-Based Signal Detection for Banded Linear Systems</title><title>2018 IEEE Global Communications Conference (GLOBECOM)</title><addtitle>GLOCOM</addtitle><description>Motivated by the recent advances in deep learning, we propose to design high-accuracy low-complexity signal detectors for banded linear systems based on deep neural networks (DNNs). We first design a fully connected DNN for signal detection. Then, to deal with the curse of dimensionality, we propose a novel convolutional neural network (CNN) based on the banded structure of the channel matrix. From simulations, we observe that the proposed CNN outperforms the fully connected DNN in both accuracy and computational time. Moreover, CNN is more robust for the extension to channel matrices with a large size or a wide band. We also run extensive numerical experiments to show that both fully connected DNN and CNN perform much better than existing detectors with comparable complexity.</description><subject>Convolution</subject><subject>Deep learning</subject><subject>Detectors</subject><subject>Feature extraction</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Signal detection</subject><issn>2576-6813</issn><isbn>1538647273</isbn><isbn>9781538647271</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj0FrAjEUhNNCodb6C7zsH8g2L2-TjZdC1WoLW_Zge5Zk90VSNMpmL_77BuppGOZjmGFsDqIEEIuXbdOu2q9SCjCl0ZUBiXfsCRRmU8sa79lEqlpzbQAf2SylXyGE1AZzOmGva6ILb8gOMcQDX9pEfbELh2iPxZpG6sZwjoU_D8XSxj5nTYgZLnbXNNIpPbMHb4-JZjedsp_N-_fqgzft9nP11vAAtRq5qTpwqieqCMEKjUjaIXow3ikpvEYikkYL3alOS-8WTktCX9VOmbwWp2z-3xsyuL8M4WSH6_52F_8ATUpIhA</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Congmin Fan</creator><creator>Xiaojun Yuan</creator><creator>Zhang, Ying-Jun Angela</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201812</creationdate><title>Deep-Learning-Based Signal Detection for Banded Linear Systems</title><author>Congmin Fan ; Xiaojun Yuan ; Zhang, Ying-Jun Angela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-84c1b5dee4e31a0633e6b33f18fb520f63eee28606c5c62fb9b62e3f47b580023</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Convolution</topic><topic>Deep learning</topic><topic>Detectors</topic><topic>Feature extraction</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Signal detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Congmin Fan</creatorcontrib><creatorcontrib>Xiaojun Yuan</creatorcontrib><creatorcontrib>Zhang, Ying-Jun Angela</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Congmin Fan</au><au>Xiaojun Yuan</au><au>Zhang, Ying-Jun Angela</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Deep-Learning-Based Signal Detection for Banded Linear Systems</atitle><btitle>2018 IEEE Global Communications Conference (GLOBECOM)</btitle><stitle>GLOCOM</stitle><date>2018-12</date><risdate>2018</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2576-6813</eissn><eisbn>1538647273</eisbn><eisbn>9781538647271</eisbn><abstract>Motivated by the recent advances in deep learning, we propose to design high-accuracy low-complexity signal detectors for banded linear systems based on deep neural networks (DNNs). We first design a fully connected DNN for signal detection. Then, to deal with the curse of dimensionality, we propose a novel convolutional neural network (CNN) based on the banded structure of the channel matrix. From simulations, we observe that the proposed CNN outperforms the fully connected DNN in both accuracy and computational time. Moreover, CNN is more robust for the extension to channel matrices with a large size or a wide band. We also run extensive numerical experiments to show that both fully connected DNN and CNN perform much better than existing detectors with comparable complexity.</abstract><pub>IEEE</pub><doi>10.1109/GLOCOM.2018.8648123</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2576-6813
ispartof 2018 IEEE Global Communications Conference (GLOBECOM), 2018, p.1-6
issn 2576-6813
language eng
recordid cdi_ieee_primary_8648123
source IEEE Xplore All Conference Series
subjects Convolution
Deep learning
Detectors
Feature extraction
Neural networks
Neurons
Signal detection
title Deep-Learning-Based Signal Detection for Banded Linear Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A38%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Deep-Learning-Based%20Signal%20Detection%20for%20Banded%20Linear%20Systems&rft.btitle=2018%20IEEE%20Global%20Communications%20Conference%20(GLOBECOM)&rft.au=Congmin%20Fan&rft.date=2018-12&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2576-6813&rft_id=info:doi/10.1109/GLOCOM.2018.8648123&rft.eisbn=1538647273&rft.eisbn_list=9781538647271&rft_dat=%3Cieee_CHZPO%3E8648123%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-84c1b5dee4e31a0633e6b33f18fb520f63eee28606c5c62fb9b62e3f47b580023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8648123&rfr_iscdi=true