Loading…
Physical Adversarial Attacks Against End-to-End Autoencoder Communication Systems
We show that end-to-end learning of communication systems through deep neural network autoencoders can be extremely vulnerable to physical adversarial attacks. Specifically, we elaborate how an attacker can craft effective physical black-box adversarial attacks. Due to the openness (broadcast nature...
Saved in:
Published in: | IEEE communications letters 2019-05, Vol.23 (5), p.847-850 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c377t-d2837231bd6697f556e22bfd001cdee663187a5c31dcb95866ca24d8195f0ff73 |
---|---|
cites | cdi_FETCH-LOGICAL-c377t-d2837231bd6697f556e22bfd001cdee663187a5c31dcb95866ca24d8195f0ff73 |
container_end_page | 850 |
container_issue | 5 |
container_start_page | 847 |
container_title | IEEE communications letters |
container_volume | 23 |
creator | Sadeghi, Meysam Larsson, Erik G. |
description | We show that end-to-end learning of communication systems through deep neural network autoencoders can be extremely vulnerable to physical adversarial attacks. Specifically, we elaborate how an attacker can craft effective physical black-box adversarial attacks. Due to the openness (broadcast nature) of the wireless channel, an adversary transmitter can increase the block-error-rate of a communication system by orders of magnitude by transmitting a well-designed perturbation signal over the channel. We reveal that the adversarial attacks are more destructive than the jamming attacks. We also show that classical coding schemes are more robust than the autoencoders against both adversarial and jamming attacks. |
doi_str_mv | 10.1109/LCOMM.2019.2901469 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8651357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8651357</ieee_id><sourcerecordid>2222201098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-d2837231bd6697f556e22bfd001cdee663187a5c31dcb95866ca24d8195f0ff73</originalsourceid><addsrcrecordid>eNo9kEtPAjEUhSdGExH9A7qZxPVgH_S1nCA-EggaH9umtB0swhTbjoZ_bxHiXdx7Fuec3HxFcQnBAEIgbiaj2XQ6QACKARIADqk4KnqQEF6hvI6zBlxUjAl-WpzFuAQAcERgr3h--thGp9WqrM23DVEFt9MpKf0Zy3qhXBtTOW5NlXyVT1l3ydtWe2NDOfLrddfmdHK-LV-2Mdl1PC9OGrWK9uJw-8Xb3fh19FBNZvePo3pSacxYqgzimCEM54ZSwRpCqEVo3hgAoDbWUoohZ4poDI2eC8Ip1QoNDYeCNKBpGO4X1b43_thNN5eb4NYqbKVXTt6691r6sJAr10lIGMEk-6_3_k3wX52NSS59F9r8okS7AZkjzy60d-ngYwy2-e-FQO5Qyz_UcodaHlDn0NU-5Ky1_wFOCcSE4V_b13qE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222201098</pqid></control><display><type>article</type><title>Physical Adversarial Attacks Against End-to-End Autoencoder Communication Systems</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Sadeghi, Meysam ; Larsson, Erik G.</creator><creatorcontrib>Sadeghi, Meysam ; Larsson, Erik G.</creatorcontrib><description>We show that end-to-end learning of communication systems through deep neural network autoencoders can be extremely vulnerable to physical adversarial attacks. Specifically, we elaborate how an attacker can craft effective physical black-box adversarial attacks. Due to the openness (broadcast nature) of the wireless channel, an adversary transmitter can increase the block-error-rate of a communication system by orders of magnitude by transmitting a well-designed perturbation signal over the channel. We reveal that the adversarial attacks are more destructive than the jamming attacks. We also show that classical coding schemes are more robust than the autoencoders against both adversarial and jamming attacks.</description><identifier>ISSN: 1089-7798</identifier><identifier>ISSN: 1558-2558</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2019.2901469</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adversarial attacks ; Artificial neural networks ; autoencoder systems ; Communications systems ; Decoding ; deep learning ; end-to-end learning ; Jamming ; Perturbation ; Perturbation methods ; Receivers ; Transmitters ; Wireless communication ; wireless security</subject><ispartof>IEEE communications letters, 2019-05, Vol.23 (5), p.847-850</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-d2837231bd6697f556e22bfd001cdee663187a5c31dcb95866ca24d8195f0ff73</citedby><cites>FETCH-LOGICAL-c377t-d2837231bd6697f556e22bfd001cdee663187a5c31dcb95866ca24d8195f0ff73</cites><orcidid>0000-0002-1176-4925 ; 0000-0002-7599-4367</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8651357$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-157535$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Sadeghi, Meysam</creatorcontrib><creatorcontrib>Larsson, Erik G.</creatorcontrib><title>Physical Adversarial Attacks Against End-to-End Autoencoder Communication Systems</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>We show that end-to-end learning of communication systems through deep neural network autoencoders can be extremely vulnerable to physical adversarial attacks. Specifically, we elaborate how an attacker can craft effective physical black-box adversarial attacks. Due to the openness (broadcast nature) of the wireless channel, an adversary transmitter can increase the block-error-rate of a communication system by orders of magnitude by transmitting a well-designed perturbation signal over the channel. We reveal that the adversarial attacks are more destructive than the jamming attacks. We also show that classical coding schemes are more robust than the autoencoders against both adversarial and jamming attacks.</description><subject>Adversarial attacks</subject><subject>Artificial neural networks</subject><subject>autoencoder systems</subject><subject>Communications systems</subject><subject>Decoding</subject><subject>deep learning</subject><subject>end-to-end learning</subject><subject>Jamming</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Receivers</subject><subject>Transmitters</subject><subject>Wireless communication</subject><subject>wireless security</subject><issn>1089-7798</issn><issn>1558-2558</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPAjEUhSdGExH9A7qZxPVgH_S1nCA-EggaH9umtB0swhTbjoZ_bxHiXdx7Fuec3HxFcQnBAEIgbiaj2XQ6QACKARIADqk4KnqQEF6hvI6zBlxUjAl-WpzFuAQAcERgr3h--thGp9WqrM23DVEFt9MpKf0Zy3qhXBtTOW5NlXyVT1l3ydtWe2NDOfLrddfmdHK-LV-2Mdl1PC9OGrWK9uJw-8Xb3fh19FBNZvePo3pSacxYqgzimCEM54ZSwRpCqEVo3hgAoDbWUoohZ4poDI2eC8Ip1QoNDYeCNKBpGO4X1b43_thNN5eb4NYqbKVXTt6691r6sJAr10lIGMEk-6_3_k3wX52NSS59F9r8okS7AZkjzy60d-ngYwy2-e-FQO5Qyz_UcodaHlDn0NU-5Ky1_wFOCcSE4V_b13qE</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Sadeghi, Meysam</creator><creator>Larsson, Erik G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>ABXSW</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG8</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-1176-4925</orcidid><orcidid>https://orcid.org/0000-0002-7599-4367</orcidid></search><sort><creationdate>20190501</creationdate><title>Physical Adversarial Attacks Against End-to-End Autoencoder Communication Systems</title><author>Sadeghi, Meysam ; Larsson, Erik G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-d2837231bd6697f556e22bfd001cdee663187a5c31dcb95866ca24d8195f0ff73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adversarial attacks</topic><topic>Artificial neural networks</topic><topic>autoencoder systems</topic><topic>Communications systems</topic><topic>Decoding</topic><topic>deep learning</topic><topic>end-to-end learning</topic><topic>Jamming</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Receivers</topic><topic>Transmitters</topic><topic>Wireless communication</topic><topic>wireless security</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadeghi, Meysam</creatorcontrib><creatorcontrib>Larsson, Erik G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SWEPUB Linköpings universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Linköpings universitet</collection><collection>SwePub Articles full text</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadeghi, Meysam</au><au>Larsson, Erik G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical Adversarial Attacks Against End-to-End Autoencoder Communication Systems</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>23</volume><issue>5</issue><spage>847</spage><epage>850</epage><pages>847-850</pages><issn>1089-7798</issn><issn>1558-2558</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>We show that end-to-end learning of communication systems through deep neural network autoencoders can be extremely vulnerable to physical adversarial attacks. Specifically, we elaborate how an attacker can craft effective physical black-box adversarial attacks. Due to the openness (broadcast nature) of the wireless channel, an adversary transmitter can increase the block-error-rate of a communication system by orders of magnitude by transmitting a well-designed perturbation signal over the channel. We reveal that the adversarial attacks are more destructive than the jamming attacks. We also show that classical coding schemes are more robust than the autoencoders against both adversarial and jamming attacks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2019.2901469</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-1176-4925</orcidid><orcidid>https://orcid.org/0000-0002-7599-4367</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-7798 |
ispartof | IEEE communications letters, 2019-05, Vol.23 (5), p.847-850 |
issn | 1089-7798 1558-2558 1558-2558 |
language | eng |
recordid | cdi_ieee_primary_8651357 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adversarial attacks Artificial neural networks autoencoder systems Communications systems Decoding deep learning end-to-end learning Jamming Perturbation Perturbation methods Receivers Transmitters Wireless communication wireless security |
title | Physical Adversarial Attacks Against End-to-End Autoencoder Communication Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A57%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20Adversarial%20Attacks%20Against%20End-to-End%20Autoencoder%20Communication%20Systems&rft.jtitle=IEEE%20communications%20letters&rft.au=Sadeghi,%20Meysam&rft.date=2019-05-01&rft.volume=23&rft.issue=5&rft.spage=847&rft.epage=850&rft.pages=847-850&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2019.2901469&rft_dat=%3Cproquest_ieee_%3E2222201098%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-d2837231bd6697f556e22bfd001cdee663187a5c31dcb95866ca24d8195f0ff73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2222201098&rft_id=info:pmid/&rft_ieee_id=8651357&rfr_iscdi=true |