Loading…

A Data-Driven Approach for Gaze Tracking

Gaze tracking presents an intuitive interface for technology in today's society, with its application focus in controlling electronic devices. This paper concentrates on the design and application of an automatic gaze tracking system utilizing commodity equipment. Compared to preceding low-cost...

Full description

Saved in:
Bibliographic Details
Main Authors: Huang, Kevin, Khalil, Mahmoud, Luciani, Evelyn, Melesse, Daniel, Ning, Taikang
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 499
container_issue
container_start_page 494
container_title
container_volume
creator Huang, Kevin
Khalil, Mahmoud
Luciani, Evelyn
Melesse, Daniel
Ning, Taikang
description Gaze tracking presents an intuitive interface for technology in today's society, with its application focus in controlling electronic devices. This paper concentrates on the design and application of an automatic gaze tracking system utilizing commodity equipment. Compared to preceding low-cost methods, the proposed method is significantly simpler, lowering the barrier of entry for this type of device, and can potentially afford more accurate tracking. Through the careful placement of the infrared (IR) light-emitting-diodes (LEDs) on the monitor and coaxially to the optical axis of the camera, the pupil was illuminated and reference glints became visible on the cornea. These glints were captured by a camera capable of detecting IR light, and were used to determine the users line of sight relative to the monitor. A linear model was used to address the horizontal and vertical components of the glints in the users eye and match them to the corresponding location point on the monitor. K-means clustering was utilized to classify the separate gaze regions with promising results.
doi_str_mv 10.1109/ICSP.2018.8652292
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8652292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8652292</ieee_id><sourcerecordid>8652292</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-32b1cbd7bc6111c9cf469374e989469f32f61ada29c810113aee3083b9f1a18c3</originalsourceid><addsrcrecordid>eNotj81KAzEURqMgWGsfQNxk6SZjbu7MnWQ5TLUWCi1Y1-VOmmj8aYdMEfTpLdjVd-DAgU-IG9AFgHb38_Z5VRgNtrBUGePMmbiCCi2VVKM-FyMDVKqjgUsxGYZ3rTWCtYQ0EneNnPKB1TSn77CTTd_nPfs3GfdZzvg3yHVm_5F2r9fiIvLnECanHYuXx4d1-6QWy9m8bRYqQV0dFJoOfLetO08A4J2PJTmsy-CsO1JEEwl4y8Z5CxoAOQTUFjsXgcF6HIvb_24KIWz6nL44_2xOx_APZNo_Rg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Data-Driven Approach for Gaze Tracking</title><source>IEEE Xplore All Conference Series</source><creator>Huang, Kevin ; Khalil, Mahmoud ; Luciani, Evelyn ; Melesse, Daniel ; Ning, Taikang</creator><creatorcontrib>Huang, Kevin ; Khalil, Mahmoud ; Luciani, Evelyn ; Melesse, Daniel ; Ning, Taikang</creatorcontrib><description>Gaze tracking presents an intuitive interface for technology in today's society, with its application focus in controlling electronic devices. This paper concentrates on the design and application of an automatic gaze tracking system utilizing commodity equipment. Compared to preceding low-cost methods, the proposed method is significantly simpler, lowering the barrier of entry for this type of device, and can potentially afford more accurate tracking. Through the careful placement of the infrared (IR) light-emitting-diodes (LEDs) on the monitor and coaxially to the optical axis of the camera, the pupil was illuminated and reference glints became visible on the cornea. These glints were captured by a camera capable of detecting IR light, and were used to determine the users line of sight relative to the monitor. A linear model was used to address the horizontal and vertical components of the glints in the users eye and match them to the corresponding location point on the monitor. K-means clustering was utilized to classify the separate gaze regions with promising results.</description><identifier>EISSN: 2164-5221</identifier><identifier>EISBN: 1538646730</identifier><identifier>EISBN: 9781538646717</identifier><identifier>EISBN: 9781538646731</identifier><identifier>EISBN: 1538646714</identifier><identifier>DOI: 10.1109/ICSP.2018.8652292</identifier><language>eng</language><publisher>IEEE</publisher><subject>automatic gaze tracking ; Cameras ; classification ; Cornea ; Gaze tracking ; human computer interface ; k-means clustering ; Lenses ; Light emitting diodes ; Lighting ; Monitoring</subject><ispartof>2018 14th IEEE International Conference on Signal Processing (ICSP), 2018, p.494-499</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8652292$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8652292$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Kevin</creatorcontrib><creatorcontrib>Khalil, Mahmoud</creatorcontrib><creatorcontrib>Luciani, Evelyn</creatorcontrib><creatorcontrib>Melesse, Daniel</creatorcontrib><creatorcontrib>Ning, Taikang</creatorcontrib><title>A Data-Driven Approach for Gaze Tracking</title><title>2018 14th IEEE International Conference on Signal Processing (ICSP)</title><addtitle>ICSP</addtitle><description>Gaze tracking presents an intuitive interface for technology in today's society, with its application focus in controlling electronic devices. This paper concentrates on the design and application of an automatic gaze tracking system utilizing commodity equipment. Compared to preceding low-cost methods, the proposed method is significantly simpler, lowering the barrier of entry for this type of device, and can potentially afford more accurate tracking. Through the careful placement of the infrared (IR) light-emitting-diodes (LEDs) on the monitor and coaxially to the optical axis of the camera, the pupil was illuminated and reference glints became visible on the cornea. These glints were captured by a camera capable of detecting IR light, and were used to determine the users line of sight relative to the monitor. A linear model was used to address the horizontal and vertical components of the glints in the users eye and match them to the corresponding location point on the monitor. K-means clustering was utilized to classify the separate gaze regions with promising results.</description><subject>automatic gaze tracking</subject><subject>Cameras</subject><subject>classification</subject><subject>Cornea</subject><subject>Gaze tracking</subject><subject>human computer interface</subject><subject>k-means clustering</subject><subject>Lenses</subject><subject>Light emitting diodes</subject><subject>Lighting</subject><subject>Monitoring</subject><issn>2164-5221</issn><isbn>1538646730</isbn><isbn>9781538646717</isbn><isbn>9781538646731</isbn><isbn>1538646714</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81KAzEURqMgWGsfQNxk6SZjbu7MnWQ5TLUWCi1Y1-VOmmj8aYdMEfTpLdjVd-DAgU-IG9AFgHb38_Z5VRgNtrBUGePMmbiCCi2VVKM-FyMDVKqjgUsxGYZ3rTWCtYQ0EneNnPKB1TSn77CTTd_nPfs3GfdZzvg3yHVm_5F2r9fiIvLnECanHYuXx4d1-6QWy9m8bRYqQV0dFJoOfLetO08A4J2PJTmsy-CsO1JEEwl4y8Z5CxoAOQTUFjsXgcF6HIvb_24KIWz6nL44_2xOx_APZNo_Rg</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Huang, Kevin</creator><creator>Khalil, Mahmoud</creator><creator>Luciani, Evelyn</creator><creator>Melesse, Daniel</creator><creator>Ning, Taikang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201808</creationdate><title>A Data-Driven Approach for Gaze Tracking</title><author>Huang, Kevin ; Khalil, Mahmoud ; Luciani, Evelyn ; Melesse, Daniel ; Ning, Taikang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-32b1cbd7bc6111c9cf469374e989469f32f61ada29c810113aee3083b9f1a18c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>automatic gaze tracking</topic><topic>Cameras</topic><topic>classification</topic><topic>Cornea</topic><topic>Gaze tracking</topic><topic>human computer interface</topic><topic>k-means clustering</topic><topic>Lenses</topic><topic>Light emitting diodes</topic><topic>Lighting</topic><topic>Monitoring</topic><toplevel>online_resources</toplevel><creatorcontrib>Huang, Kevin</creatorcontrib><creatorcontrib>Khalil, Mahmoud</creatorcontrib><creatorcontrib>Luciani, Evelyn</creatorcontrib><creatorcontrib>Melesse, Daniel</creatorcontrib><creatorcontrib>Ning, Taikang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Kevin</au><au>Khalil, Mahmoud</au><au>Luciani, Evelyn</au><au>Melesse, Daniel</au><au>Ning, Taikang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Data-Driven Approach for Gaze Tracking</atitle><btitle>2018 14th IEEE International Conference on Signal Processing (ICSP)</btitle><stitle>ICSP</stitle><date>2018-08</date><risdate>2018</risdate><spage>494</spage><epage>499</epage><pages>494-499</pages><eissn>2164-5221</eissn><eisbn>1538646730</eisbn><eisbn>9781538646717</eisbn><eisbn>9781538646731</eisbn><eisbn>1538646714</eisbn><abstract>Gaze tracking presents an intuitive interface for technology in today's society, with its application focus in controlling electronic devices. This paper concentrates on the design and application of an automatic gaze tracking system utilizing commodity equipment. Compared to preceding low-cost methods, the proposed method is significantly simpler, lowering the barrier of entry for this type of device, and can potentially afford more accurate tracking. Through the careful placement of the infrared (IR) light-emitting-diodes (LEDs) on the monitor and coaxially to the optical axis of the camera, the pupil was illuminated and reference glints became visible on the cornea. These glints were captured by a camera capable of detecting IR light, and were used to determine the users line of sight relative to the monitor. A linear model was used to address the horizontal and vertical components of the glints in the users eye and match them to the corresponding location point on the monitor. K-means clustering was utilized to classify the separate gaze regions with promising results.</abstract><pub>IEEE</pub><doi>10.1109/ICSP.2018.8652292</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2164-5221
ispartof 2018 14th IEEE International Conference on Signal Processing (ICSP), 2018, p.494-499
issn 2164-5221
language eng
recordid cdi_ieee_primary_8652292
source IEEE Xplore All Conference Series
subjects automatic gaze tracking
Cameras
classification
Cornea
Gaze tracking
human computer interface
k-means clustering
Lenses
Light emitting diodes
Lighting
Monitoring
title A Data-Driven Approach for Gaze Tracking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A46%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Data-Driven%20Approach%20for%20Gaze%20Tracking&rft.btitle=2018%2014th%20IEEE%20International%20Conference%20on%20Signal%20Processing%20(ICSP)&rft.au=Huang,%20Kevin&rft.date=2018-08&rft.spage=494&rft.epage=499&rft.pages=494-499&rft.eissn=2164-5221&rft_id=info:doi/10.1109/ICSP.2018.8652292&rft.eisbn=1538646730&rft.eisbn_list=9781538646717&rft.eisbn_list=9781538646731&rft.eisbn_list=1538646714&rft_dat=%3Cieee_CHZPO%3E8652292%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-32b1cbd7bc6111c9cf469374e989469f32f61ada29c810113aee3083b9f1a18c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8652292&rfr_iscdi=true