Loading…

The Convergence of Semi-Implicit Numerical Methods

Rapid development of semi-implicit and semi-explicit integration techniques allowed to create relatively stable and efficient extrapolation and composition ODE solvers. However, there are several shortcomings in semi-implicit approach that should be taken into consideration while solving non-Hamilto...

Full description

Saved in:
Bibliographic Details
Main Authors: Tutueva, Aleksandra V., Rodionova, Ekaterina A., Baidina, Mariia P., Kavunskaia, Anastasiia V., Kozak, Maria N.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 368
container_issue
container_start_page 366
container_title
container_volume
creator Tutueva, Aleksandra V.
Rodionova, Ekaterina A.
Baidina, Mariia P.
Kavunskaia, Anastasiia V.
Kozak, Maria N.
description Rapid development of semi-implicit and semi-explicit integration techniques allowed to create relatively stable and efficient extrapolation and composition ODE solvers. However, there are several shortcomings in semi-implicit approach that should be taken into consideration while solving non-Hamiltonian systems. One of the most disturbing features of semi-implicit integration methods is their low convergence, which, in theory, can significantly affect the performance of the solver. In this paper we study the convergence of ODE solvers based on of semi-implicit integrators. The linear differential equations of different order are considered as a test systems. The dependence between method convergence and system order is revealed. The comparison with traditional ODE solvers is given. We experimentally show that the semi-implicit algorithms may exhibit a low convergence for a certain systems. We also propose a technique to reduce this effect - the introduction of correction coefficient and give an experimental evaluation of this approach.
doi_str_mv 10.1109/EIConRus.2019.8656632
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8656632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8656632</ieee_id><sourcerecordid>8656632</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-284db3f4a5171d1302346f7063f698f505af1effe0f8d37c3f9d1f96611313243</originalsourceid><addsrcrecordid>eNotj91Kw0AQRldBsNQ8gQh5gcSdnezfpYSqgaqg9brEZMauJE3JpoJvb6C9-i7O4cAnxB3IHED6-1VVDvv3Y8yVBJ87o41BdSESbx1Y5UAienMpFgqtyWaqr0US44-UUinws7EQarOjdK780vhN-4bSgdMP6kNW9YcuNGFKX489jaGpu_SFpt3QxhtxxXUXKTnvUnw-rjblc7Z-e6rKh3UWwOopU65ov5CLWoOFFlAqLAxbaZCNd6ylrhmImSS7Fm2D7FtgbwwAAqoCl-L21A1EtD2Moa_Hv-35Jf4DLoxFjw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Convergence of Semi-Implicit Numerical Methods</title><source>IEEE Xplore All Conference Series</source><creator>Tutueva, Aleksandra V. ; Rodionova, Ekaterina A. ; Baidina, Mariia P. ; Kavunskaia, Anastasiia V. ; Kozak, Maria N.</creator><creatorcontrib>Tutueva, Aleksandra V. ; Rodionova, Ekaterina A. ; Baidina, Mariia P. ; Kavunskaia, Anastasiia V. ; Kozak, Maria N.</creatorcontrib><description>Rapid development of semi-implicit and semi-explicit integration techniques allowed to create relatively stable and efficient extrapolation and composition ODE solvers. However, there are several shortcomings in semi-implicit approach that should be taken into consideration while solving non-Hamiltonian systems. One of the most disturbing features of semi-implicit integration methods is their low convergence, which, in theory, can significantly affect the performance of the solver. In this paper we study the convergence of ODE solvers based on of semi-implicit integrators. The linear differential equations of different order are considered as a test systems. The dependence between method convergence and system order is revealed. The comparison with traditional ODE solvers is given. We experimentally show that the semi-implicit algorithms may exhibit a low convergence for a certain systems. We also propose a technique to reduce this effect - the introduction of correction coefficient and give an experimental evaluation of this approach.</description><identifier>EISSN: 2376-6565</identifier><identifier>EISBN: 9781728103396</identifier><identifier>EISBN: 9781728103389</identifier><identifier>EISBN: 1728103398</identifier><identifier>EISBN: 172810338X</identifier><identifier>DOI: 10.1109/EIConRus.2019.8656632</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convergence ; Damping ; Differential equations ; Finite wordlength effects ; initial value problem ; linear system ; Linear systems ; Mathematical model ; numerical integration ; Numerical models ; ODE solvers ; semi-implicit method</subject><ispartof>2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 2019, p.366-368</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8656632$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8656632$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tutueva, Aleksandra V.</creatorcontrib><creatorcontrib>Rodionova, Ekaterina A.</creatorcontrib><creatorcontrib>Baidina, Mariia P.</creatorcontrib><creatorcontrib>Kavunskaia, Anastasiia V.</creatorcontrib><creatorcontrib>Kozak, Maria N.</creatorcontrib><title>The Convergence of Semi-Implicit Numerical Methods</title><title>2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)</title><addtitle>EIConRus</addtitle><description>Rapid development of semi-implicit and semi-explicit integration techniques allowed to create relatively stable and efficient extrapolation and composition ODE solvers. However, there are several shortcomings in semi-implicit approach that should be taken into consideration while solving non-Hamiltonian systems. One of the most disturbing features of semi-implicit integration methods is their low convergence, which, in theory, can significantly affect the performance of the solver. In this paper we study the convergence of ODE solvers based on of semi-implicit integrators. The linear differential equations of different order are considered as a test systems. The dependence between method convergence and system order is revealed. The comparison with traditional ODE solvers is given. We experimentally show that the semi-implicit algorithms may exhibit a low convergence for a certain systems. We also propose a technique to reduce this effect - the introduction of correction coefficient and give an experimental evaluation of this approach.</description><subject>Convergence</subject><subject>Damping</subject><subject>Differential equations</subject><subject>Finite wordlength effects</subject><subject>initial value problem</subject><subject>linear system</subject><subject>Linear systems</subject><subject>Mathematical model</subject><subject>numerical integration</subject><subject>Numerical models</subject><subject>ODE solvers</subject><subject>semi-implicit method</subject><issn>2376-6565</issn><isbn>9781728103396</isbn><isbn>9781728103389</isbn><isbn>1728103398</isbn><isbn>172810338X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj91Kw0AQRldBsNQ8gQh5gcSdnezfpYSqgaqg9brEZMauJE3JpoJvb6C9-i7O4cAnxB3IHED6-1VVDvv3Y8yVBJ87o41BdSESbx1Y5UAienMpFgqtyWaqr0US44-UUinws7EQarOjdK780vhN-4bSgdMP6kNW9YcuNGFKX489jaGpu_SFpt3QxhtxxXUXKTnvUnw-rjblc7Z-e6rKh3UWwOopU65ov5CLWoOFFlAqLAxbaZCNd6ylrhmImSS7Fm2D7FtgbwwAAqoCl-L21A1EtD2Moa_Hv-35Jf4DLoxFjw</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Tutueva, Aleksandra V.</creator><creator>Rodionova, Ekaterina A.</creator><creator>Baidina, Mariia P.</creator><creator>Kavunskaia, Anastasiia V.</creator><creator>Kozak, Maria N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201901</creationdate><title>The Convergence of Semi-Implicit Numerical Methods</title><author>Tutueva, Aleksandra V. ; Rodionova, Ekaterina A. ; Baidina, Mariia P. ; Kavunskaia, Anastasiia V. ; Kozak, Maria N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-284db3f4a5171d1302346f7063f698f505af1effe0f8d37c3f9d1f96611313243</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Convergence</topic><topic>Damping</topic><topic>Differential equations</topic><topic>Finite wordlength effects</topic><topic>initial value problem</topic><topic>linear system</topic><topic>Linear systems</topic><topic>Mathematical model</topic><topic>numerical integration</topic><topic>Numerical models</topic><topic>ODE solvers</topic><topic>semi-implicit method</topic><toplevel>online_resources</toplevel><creatorcontrib>Tutueva, Aleksandra V.</creatorcontrib><creatorcontrib>Rodionova, Ekaterina A.</creatorcontrib><creatorcontrib>Baidina, Mariia P.</creatorcontrib><creatorcontrib>Kavunskaia, Anastasiia V.</creatorcontrib><creatorcontrib>Kozak, Maria N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tutueva, Aleksandra V.</au><au>Rodionova, Ekaterina A.</au><au>Baidina, Mariia P.</au><au>Kavunskaia, Anastasiia V.</au><au>Kozak, Maria N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Convergence of Semi-Implicit Numerical Methods</atitle><btitle>2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)</btitle><stitle>EIConRus</stitle><date>2019-01</date><risdate>2019</risdate><spage>366</spage><epage>368</epage><pages>366-368</pages><eissn>2376-6565</eissn><eisbn>9781728103396</eisbn><eisbn>9781728103389</eisbn><eisbn>1728103398</eisbn><eisbn>172810338X</eisbn><abstract>Rapid development of semi-implicit and semi-explicit integration techniques allowed to create relatively stable and efficient extrapolation and composition ODE solvers. However, there are several shortcomings in semi-implicit approach that should be taken into consideration while solving non-Hamiltonian systems. One of the most disturbing features of semi-implicit integration methods is their low convergence, which, in theory, can significantly affect the performance of the solver. In this paper we study the convergence of ODE solvers based on of semi-implicit integrators. The linear differential equations of different order are considered as a test systems. The dependence between method convergence and system order is revealed. The comparison with traditional ODE solvers is given. We experimentally show that the semi-implicit algorithms may exhibit a low convergence for a certain systems. We also propose a technique to reduce this effect - the introduction of correction coefficient and give an experimental evaluation of this approach.</abstract><pub>IEEE</pub><doi>10.1109/EIConRus.2019.8656632</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2376-6565
ispartof 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 2019, p.366-368
issn 2376-6565
language eng
recordid cdi_ieee_primary_8656632
source IEEE Xplore All Conference Series
subjects Convergence
Damping
Differential equations
Finite wordlength effects
initial value problem
linear system
Linear systems
Mathematical model
numerical integration
Numerical models
ODE solvers
semi-implicit method
title The Convergence of Semi-Implicit Numerical Methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A33%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Convergence%20of%20Semi-Implicit%20Numerical%20Methods&rft.btitle=2019%20IEEE%20Conference%20of%20Russian%20Young%20Researchers%20in%20Electrical%20and%20Electronic%20Engineering%20(EIConRus)&rft.au=Tutueva,%20Aleksandra%20V.&rft.date=2019-01&rft.spage=366&rft.epage=368&rft.pages=366-368&rft.eissn=2376-6565&rft_id=info:doi/10.1109/EIConRus.2019.8656632&rft.eisbn=9781728103396&rft.eisbn_list=9781728103389&rft.eisbn_list=1728103398&rft.eisbn_list=172810338X&rft_dat=%3Cieee_CHZPO%3E8656632%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-284db3f4a5171d1302346f7063f698f505af1effe0f8d37c3f9d1f96611313243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8656632&rfr_iscdi=true