Loading…

Development of Scenarios for Automatic Processing and Data Mining in a Multi-Agent Environment

The article proposes tools for the creation and execution of scenarios processing and data mining in the multi-agent environment. The hybrid database of information resources is developed, the database of methods and models, ontologies and tools for processing and extracting data in the web environm...

Full description

Saved in:
Bibliographic Details
Main Authors: Pisarev, Ivan A., Kotova, Elena E., Pisarev, Andrei S., Stash, Natalia V.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 633
container_issue
container_start_page 630
container_title
container_volume
creator Pisarev, Ivan A.
Kotova, Elena E.
Pisarev, Andrei S.
Stash, Natalia V.
description The article proposes tools for the creation and execution of scenarios processing and data mining in the multi-agent environment. The hybrid database of information resources is developed, the database of methods and models, ontologies and tools for processing and extracting data in the web environment is also proposed. Metadata describes machine learning methods related to regression analysis and classification of information resources based on Bayesian theorem, decision trees, support vector machines, convolutional neural networks, and other. Examples of research scenarios, including the processing of video images and signals, the classification and identification of models of object trajectories are given. The task of automated data processing and analysis is considered with use of the example of multidimensional sonar monitoring. Automatic data analysis is implemented within the network software environment based on Semantic Web standards. The results of the work can be applied in research and in the field of students training.
doi_str_mv 10.1109/EIConRus.2019.8656816
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8656816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8656816</ieee_id><sourcerecordid>8656816</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4a1978cfc9b44dd64ff5c3f0695cb633fe35634d61f343123fbf23090efa251b3</originalsourceid><addsrcrecordid>eNotkF9LwzAUxaMgOGY_gQj5Aq1JbpM2j2WrbjBR_PPqSNNkRLpkNO3Ab2-Lezrncg4_LgehB0oySol8rLer4N_HmDFCZVYKLkoqrlAii5IWrKQEQIprtGBQiHRK-S1KYvwhhDBG5dRYoO-1OZsunI7GDzhY_KGNV70LEdvQ42ocwlENTuO3PmgTo_MHrHyL12pQ-MX5-XYeT37sBpdWhxlT-7Prg5-Rd-jGqi6a5KJL9PVUf6426e71ebuqdqmjBR_SXE3vlNpq2eR524rcWq7BEiG5bgSANcAF5K2gFnKgDGxjGRBJjFWM0waW6P6f64wx-1Pvjqr_3V8WgT9IuFad</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Development of Scenarios for Automatic Processing and Data Mining in a Multi-Agent Environment</title><source>IEEE Xplore All Conference Series</source><creator>Pisarev, Ivan A. ; Kotova, Elena E. ; Pisarev, Andrei S. ; Stash, Natalia V.</creator><creatorcontrib>Pisarev, Ivan A. ; Kotova, Elena E. ; Pisarev, Andrei S. ; Stash, Natalia V.</creatorcontrib><description>The article proposes tools for the creation and execution of scenarios processing and data mining in the multi-agent environment. The hybrid database of information resources is developed, the database of methods and models, ontologies and tools for processing and extracting data in the web environment is also proposed. Metadata describes machine learning methods related to regression analysis and classification of information resources based on Bayesian theorem, decision trees, support vector machines, convolutional neural networks, and other. Examples of research scenarios, including the processing of video images and signals, the classification and identification of models of object trajectories are given. The task of automated data processing and analysis is considered with use of the example of multidimensional sonar monitoring. Automatic data analysis is implemented within the network software environment based on Semantic Web standards. The results of the work can be applied in research and in the field of students training.</description><identifier>EISSN: 2376-6565</identifier><identifier>EISBN: 9781728103396</identifier><identifier>EISBN: 9781728103389</identifier><identifier>EISBN: 1728103398</identifier><identifier>EISBN: 172810338X</identifier><identifier>DOI: 10.1109/EIConRus.2019.8656816</identifier><language>eng</language><publisher>IEEE</publisher><subject>automated construction of thesauri ; Data processing ; hydroacoustic signals ; knowledge base ; Machine learning ; Ontologies ; ontology ; Software ; Task analysis ; Trajectory</subject><ispartof>2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 2019, p.630-633</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8656816$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8656816$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pisarev, Ivan A.</creatorcontrib><creatorcontrib>Kotova, Elena E.</creatorcontrib><creatorcontrib>Pisarev, Andrei S.</creatorcontrib><creatorcontrib>Stash, Natalia V.</creatorcontrib><title>Development of Scenarios for Automatic Processing and Data Mining in a Multi-Agent Environment</title><title>2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)</title><addtitle>EIConRus</addtitle><description>The article proposes tools for the creation and execution of scenarios processing and data mining in the multi-agent environment. The hybrid database of information resources is developed, the database of methods and models, ontologies and tools for processing and extracting data in the web environment is also proposed. Metadata describes machine learning methods related to regression analysis and classification of information resources based on Bayesian theorem, decision trees, support vector machines, convolutional neural networks, and other. Examples of research scenarios, including the processing of video images and signals, the classification and identification of models of object trajectories are given. The task of automated data processing and analysis is considered with use of the example of multidimensional sonar monitoring. Automatic data analysis is implemented within the network software environment based on Semantic Web standards. The results of the work can be applied in research and in the field of students training.</description><subject>automated construction of thesauri</subject><subject>Data processing</subject><subject>hydroacoustic signals</subject><subject>knowledge base</subject><subject>Machine learning</subject><subject>Ontologies</subject><subject>ontology</subject><subject>Software</subject><subject>Task analysis</subject><subject>Trajectory</subject><issn>2376-6565</issn><isbn>9781728103396</isbn><isbn>9781728103389</isbn><isbn>1728103398</isbn><isbn>172810338X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkF9LwzAUxaMgOGY_gQj5Aq1JbpM2j2WrbjBR_PPqSNNkRLpkNO3Ab2-Lezrncg4_LgehB0oySol8rLer4N_HmDFCZVYKLkoqrlAii5IWrKQEQIprtGBQiHRK-S1KYvwhhDBG5dRYoO-1OZsunI7GDzhY_KGNV70LEdvQ42ocwlENTuO3PmgTo_MHrHyL12pQ-MX5-XYeT37sBpdWhxlT-7Prg5-Rd-jGqi6a5KJL9PVUf6426e71ebuqdqmjBR_SXE3vlNpq2eR524rcWq7BEiG5bgSANcAF5K2gFnKgDGxjGRBJjFWM0waW6P6f64wx-1Pvjqr_3V8WgT9IuFad</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Pisarev, Ivan A.</creator><creator>Kotova, Elena E.</creator><creator>Pisarev, Andrei S.</creator><creator>Stash, Natalia V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201901</creationdate><title>Development of Scenarios for Automatic Processing and Data Mining in a Multi-Agent Environment</title><author>Pisarev, Ivan A. ; Kotova, Elena E. ; Pisarev, Andrei S. ; Stash, Natalia V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4a1978cfc9b44dd64ff5c3f0695cb633fe35634d61f343123fbf23090efa251b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>automated construction of thesauri</topic><topic>Data processing</topic><topic>hydroacoustic signals</topic><topic>knowledge base</topic><topic>Machine learning</topic><topic>Ontologies</topic><topic>ontology</topic><topic>Software</topic><topic>Task analysis</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Pisarev, Ivan A.</creatorcontrib><creatorcontrib>Kotova, Elena E.</creatorcontrib><creatorcontrib>Pisarev, Andrei S.</creatorcontrib><creatorcontrib>Stash, Natalia V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pisarev, Ivan A.</au><au>Kotova, Elena E.</au><au>Pisarev, Andrei S.</au><au>Stash, Natalia V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Development of Scenarios for Automatic Processing and Data Mining in a Multi-Agent Environment</atitle><btitle>2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)</btitle><stitle>EIConRus</stitle><date>2019-01</date><risdate>2019</risdate><spage>630</spage><epage>633</epage><pages>630-633</pages><eissn>2376-6565</eissn><eisbn>9781728103396</eisbn><eisbn>9781728103389</eisbn><eisbn>1728103398</eisbn><eisbn>172810338X</eisbn><abstract>The article proposes tools for the creation and execution of scenarios processing and data mining in the multi-agent environment. The hybrid database of information resources is developed, the database of methods and models, ontologies and tools for processing and extracting data in the web environment is also proposed. Metadata describes machine learning methods related to regression analysis and classification of information resources based on Bayesian theorem, decision trees, support vector machines, convolutional neural networks, and other. Examples of research scenarios, including the processing of video images and signals, the classification and identification of models of object trajectories are given. The task of automated data processing and analysis is considered with use of the example of multidimensional sonar monitoring. Automatic data analysis is implemented within the network software environment based on Semantic Web standards. The results of the work can be applied in research and in the field of students training.</abstract><pub>IEEE</pub><doi>10.1109/EIConRus.2019.8656816</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2376-6565
ispartof 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 2019, p.630-633
issn 2376-6565
language eng
recordid cdi_ieee_primary_8656816
source IEEE Xplore All Conference Series
subjects automated construction of thesauri
Data processing
hydroacoustic signals
knowledge base
Machine learning
Ontologies
ontology
Software
Task analysis
Trajectory
title Development of Scenarios for Automatic Processing and Data Mining in a Multi-Agent Environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A41%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Development%20of%20Scenarios%20for%20Automatic%20Processing%20and%20Data%20Mining%20in%20a%20Multi-Agent%20Environment&rft.btitle=2019%20IEEE%20Conference%20of%20Russian%20Young%20Researchers%20in%20Electrical%20and%20Electronic%20Engineering%20(EIConRus)&rft.au=Pisarev,%20Ivan%20A.&rft.date=2019-01&rft.spage=630&rft.epage=633&rft.pages=630-633&rft.eissn=2376-6565&rft_id=info:doi/10.1109/EIConRus.2019.8656816&rft.eisbn=9781728103396&rft.eisbn_list=9781728103389&rft.eisbn_list=1728103398&rft.eisbn_list=172810338X&rft_dat=%3Cieee_CHZPO%3E8656816%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-4a1978cfc9b44dd64ff5c3f0695cb633fe35634d61f343123fbf23090efa251b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8656816&rfr_iscdi=true