Loading…

Fractal Dimension-based Methodology for Sudden Cardiac Death Prediction

Sudden cardiac death (SCD) is a disease that can be regarded as one of the principal death causes in the society. Hence, if the SCD event can be predicted in the earliest stage possible, it will allow saving people lives because they will receive timely medical procedures. In this paper, a methodolo...

Full description

Saved in:
Bibliographic Details
Main Authors: Lopez-Caracheo, Francisco, Camacho, Antonio Bazaldua, Perez-Ramirez, Carlos A., Valtierra-Rodriguez, Martin, Dominguez-Gonzalez, Aurelio, Amezquita-Sanchez, Juan P.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Lopez-Caracheo, Francisco
Camacho, Antonio Bazaldua
Perez-Ramirez, Carlos A.
Valtierra-Rodriguez, Martin
Dominguez-Gonzalez, Aurelio
Amezquita-Sanchez, Juan P.
description Sudden cardiac death (SCD) is a disease that can be regarded as one of the principal death causes in the society. Hence, if the SCD event can be predicted in the earliest stage possible, it will allow saving people lives because they will receive timely medical procedures. In this paper, a methodology to predict SCD of an automatic manner using ECG signals, fractal dimension (FD), and artificial neural networks is presented. Three FD methods are investigated, Higuchi fractal dimension, Box dimension, and Katz fractal dimension. The effectiveness of the proposed methodology for predicting a SCD event is demonstrated using a database of 38 patients, 20 with SCD and 18 normal, provided by MIT-BIH (Boston's Beth Israel Hospital). The results show an accuracy of 91.4% 14 minutes prior to SCD event.
doi_str_mv 10.1109/ROPEC.2018.8661371
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8661371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8661371</ieee_id><sourcerecordid>8661371</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9402c45a73a460839d60b8cc40ee90ab514922204ed594f4cb43176f71dc7af13</originalsourceid><addsrcrecordid>eNotj8tKw0AUQEdBsNb-gG7mBxLvvDNLSR8KlRYf63Izc2NH2kQmcdG_V7CrszoHDmN3AkohwD-8braLupQgqrKyVignLtiNMKqyxisjL9lEGqcKcA6u2WwYvgBASVDamQlbLTOGEQ98no7UDanvigYHivyFxn0f-0P_eeJtn_nbT4zU8RpzTBj4nHDc822mmML4Z92yqxYPA83OnLKP5eK9firWm9Vz_bguknBmLLwGGbRBp1BbqJSPFpoqBA1EHrAxQnspJWiKxutWh0Yr4WzrRAwOW6Gm7P6_m4ho953TEfNpd_5WvyghS2k</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fractal Dimension-based Methodology for Sudden Cardiac Death Prediction</title><source>IEEE Xplore All Conference Series</source><creator>Lopez-Caracheo, Francisco ; Camacho, Antonio Bazaldua ; Perez-Ramirez, Carlos A. ; Valtierra-Rodriguez, Martin ; Dominguez-Gonzalez, Aurelio ; Amezquita-Sanchez, Juan P.</creator><creatorcontrib>Lopez-Caracheo, Francisco ; Camacho, Antonio Bazaldua ; Perez-Ramirez, Carlos A. ; Valtierra-Rodriguez, Martin ; Dominguez-Gonzalez, Aurelio ; Amezquita-Sanchez, Juan P.</creatorcontrib><description>Sudden cardiac death (SCD) is a disease that can be regarded as one of the principal death causes in the society. Hence, if the SCD event can be predicted in the earliest stage possible, it will allow saving people lives because they will receive timely medical procedures. In this paper, a methodology to predict SCD of an automatic manner using ECG signals, fractal dimension (FD), and artificial neural networks is presented. Three FD methods are investigated, Higuchi fractal dimension, Box dimension, and Katz fractal dimension. The effectiveness of the proposed methodology for predicting a SCD event is demonstrated using a database of 38 patients, 20 with SCD and 18 normal, provided by MIT-BIH (Boston's Beth Israel Hospital). The results show an accuracy of 91.4% 14 minutes prior to SCD event.</description><identifier>EISSN: 2573-0770</identifier><identifier>EISBN: 1538659352</identifier><identifier>EISBN: 9781538659359</identifier><identifier>DOI: 10.1109/ROPEC.2018.8661371</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analysis of variance ; Artificial neural networks ; Death ; ECG signals ; Electrocardiography ; Fractal Dimension ; Fractals ; Prediction ; Prediction algorithms ; Sudden Cardiac Death ; Time analysis</subject><ispartof>2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), 2018, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8661371$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23910,23911,25119,27904,54533,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8661371$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lopez-Caracheo, Francisco</creatorcontrib><creatorcontrib>Camacho, Antonio Bazaldua</creatorcontrib><creatorcontrib>Perez-Ramirez, Carlos A.</creatorcontrib><creatorcontrib>Valtierra-Rodriguez, Martin</creatorcontrib><creatorcontrib>Dominguez-Gonzalez, Aurelio</creatorcontrib><creatorcontrib>Amezquita-Sanchez, Juan P.</creatorcontrib><title>Fractal Dimension-based Methodology for Sudden Cardiac Death Prediction</title><title>2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)</title><addtitle>ROPEC</addtitle><description>Sudden cardiac death (SCD) is a disease that can be regarded as one of the principal death causes in the society. Hence, if the SCD event can be predicted in the earliest stage possible, it will allow saving people lives because they will receive timely medical procedures. In this paper, a methodology to predict SCD of an automatic manner using ECG signals, fractal dimension (FD), and artificial neural networks is presented. Three FD methods are investigated, Higuchi fractal dimension, Box dimension, and Katz fractal dimension. The effectiveness of the proposed methodology for predicting a SCD event is demonstrated using a database of 38 patients, 20 with SCD and 18 normal, provided by MIT-BIH (Boston's Beth Israel Hospital). The results show an accuracy of 91.4% 14 minutes prior to SCD event.</description><subject>Analysis of variance</subject><subject>Artificial neural networks</subject><subject>Death</subject><subject>ECG signals</subject><subject>Electrocardiography</subject><subject>Fractal Dimension</subject><subject>Fractals</subject><subject>Prediction</subject><subject>Prediction algorithms</subject><subject>Sudden Cardiac Death</subject><subject>Time analysis</subject><issn>2573-0770</issn><isbn>1538659352</isbn><isbn>9781538659359</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKw0AUQEdBsNb-gG7mBxLvvDNLSR8KlRYf63Izc2NH2kQmcdG_V7CrszoHDmN3AkohwD-8braLupQgqrKyVignLtiNMKqyxisjL9lEGqcKcA6u2WwYvgBASVDamQlbLTOGEQ98no7UDanvigYHivyFxn0f-0P_eeJtn_nbT4zU8RpzTBj4nHDc822mmML4Z92yqxYPA83OnLKP5eK9firWm9Vz_bguknBmLLwGGbRBp1BbqJSPFpoqBA1EHrAxQnspJWiKxutWh0Yr4WzrRAwOW6Gm7P6_m4ho953TEfNpd_5WvyghS2k</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Lopez-Caracheo, Francisco</creator><creator>Camacho, Antonio Bazaldua</creator><creator>Perez-Ramirez, Carlos A.</creator><creator>Valtierra-Rodriguez, Martin</creator><creator>Dominguez-Gonzalez, Aurelio</creator><creator>Amezquita-Sanchez, Juan P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201811</creationdate><title>Fractal Dimension-based Methodology for Sudden Cardiac Death Prediction</title><author>Lopez-Caracheo, Francisco ; Camacho, Antonio Bazaldua ; Perez-Ramirez, Carlos A. ; Valtierra-Rodriguez, Martin ; Dominguez-Gonzalez, Aurelio ; Amezquita-Sanchez, Juan P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9402c45a73a460839d60b8cc40ee90ab514922204ed594f4cb43176f71dc7af13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis of variance</topic><topic>Artificial neural networks</topic><topic>Death</topic><topic>ECG signals</topic><topic>Electrocardiography</topic><topic>Fractal Dimension</topic><topic>Fractals</topic><topic>Prediction</topic><topic>Prediction algorithms</topic><topic>Sudden Cardiac Death</topic><topic>Time analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Lopez-Caracheo, Francisco</creatorcontrib><creatorcontrib>Camacho, Antonio Bazaldua</creatorcontrib><creatorcontrib>Perez-Ramirez, Carlos A.</creatorcontrib><creatorcontrib>Valtierra-Rodriguez, Martin</creatorcontrib><creatorcontrib>Dominguez-Gonzalez, Aurelio</creatorcontrib><creatorcontrib>Amezquita-Sanchez, Juan P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lopez-Caracheo, Francisco</au><au>Camacho, Antonio Bazaldua</au><au>Perez-Ramirez, Carlos A.</au><au>Valtierra-Rodriguez, Martin</au><au>Dominguez-Gonzalez, Aurelio</au><au>Amezquita-Sanchez, Juan P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fractal Dimension-based Methodology for Sudden Cardiac Death Prediction</atitle><btitle>2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)</btitle><stitle>ROPEC</stitle><date>2018-11</date><risdate>2018</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2573-0770</eissn><eisbn>1538659352</eisbn><eisbn>9781538659359</eisbn><abstract>Sudden cardiac death (SCD) is a disease that can be regarded as one of the principal death causes in the society. Hence, if the SCD event can be predicted in the earliest stage possible, it will allow saving people lives because they will receive timely medical procedures. In this paper, a methodology to predict SCD of an automatic manner using ECG signals, fractal dimension (FD), and artificial neural networks is presented. Three FD methods are investigated, Higuchi fractal dimension, Box dimension, and Katz fractal dimension. The effectiveness of the proposed methodology for predicting a SCD event is demonstrated using a database of 38 patients, 20 with SCD and 18 normal, provided by MIT-BIH (Boston's Beth Israel Hospital). The results show an accuracy of 91.4% 14 minutes prior to SCD event.</abstract><pub>IEEE</pub><doi>10.1109/ROPEC.2018.8661371</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2573-0770
ispartof 2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), 2018, p.1-6
issn 2573-0770
language eng
recordid cdi_ieee_primary_8661371
source IEEE Xplore All Conference Series
subjects Analysis of variance
Artificial neural networks
Death
ECG signals
Electrocardiography
Fractal Dimension
Fractals
Prediction
Prediction algorithms
Sudden Cardiac Death
Time analysis
title Fractal Dimension-based Methodology for Sudden Cardiac Death Prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A33%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fractal%20Dimension-based%20Methodology%20for%20Sudden%20Cardiac%20Death%20Prediction&rft.btitle=2018%20IEEE%20International%20Autumn%20Meeting%20on%20Power,%20Electronics%20and%20Computing%20(ROPEC)&rft.au=Lopez-Caracheo,%20Francisco&rft.date=2018-11&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2573-0770&rft_id=info:doi/10.1109/ROPEC.2018.8661371&rft.eisbn=1538659352&rft.eisbn_list=9781538659359&rft_dat=%3Cieee_CHZPO%3E8661371%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-9402c45a73a460839d60b8cc40ee90ab514922204ed594f4cb43176f71dc7af13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8661371&rfr_iscdi=true