Loading…
Fractal Dimension-based Methodology for Sudden Cardiac Death Prediction
Sudden cardiac death (SCD) is a disease that can be regarded as one of the principal death causes in the society. Hence, if the SCD event can be predicted in the earliest stage possible, it will allow saving people lives because they will receive timely medical procedures. In this paper, a methodolo...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Lopez-Caracheo, Francisco Camacho, Antonio Bazaldua Perez-Ramirez, Carlos A. Valtierra-Rodriguez, Martin Dominguez-Gonzalez, Aurelio Amezquita-Sanchez, Juan P. |
description | Sudden cardiac death (SCD) is a disease that can be regarded as one of the principal death causes in the society. Hence, if the SCD event can be predicted in the earliest stage possible, it will allow saving people lives because they will receive timely medical procedures. In this paper, a methodology to predict SCD of an automatic manner using ECG signals, fractal dimension (FD), and artificial neural networks is presented. Three FD methods are investigated, Higuchi fractal dimension, Box dimension, and Katz fractal dimension. The effectiveness of the proposed methodology for predicting a SCD event is demonstrated using a database of 38 patients, 20 with SCD and 18 normal, provided by MIT-BIH (Boston's Beth Israel Hospital). The results show an accuracy of 91.4% 14 minutes prior to SCD event. |
doi_str_mv | 10.1109/ROPEC.2018.8661371 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8661371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8661371</ieee_id><sourcerecordid>8661371</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9402c45a73a460839d60b8cc40ee90ab514922204ed594f4cb43176f71dc7af13</originalsourceid><addsrcrecordid>eNotj8tKw0AUQEdBsNb-gG7mBxLvvDNLSR8KlRYf63Izc2NH2kQmcdG_V7CrszoHDmN3AkohwD-8braLupQgqrKyVignLtiNMKqyxisjL9lEGqcKcA6u2WwYvgBASVDamQlbLTOGEQ98no7UDanvigYHivyFxn0f-0P_eeJtn_nbT4zU8RpzTBj4nHDc822mmML4Z92yqxYPA83OnLKP5eK9firWm9Vz_bguknBmLLwGGbRBp1BbqJSPFpoqBA1EHrAxQnspJWiKxutWh0Yr4WzrRAwOW6Gm7P6_m4ho953TEfNpd_5WvyghS2k</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fractal Dimension-based Methodology for Sudden Cardiac Death Prediction</title><source>IEEE Xplore All Conference Series</source><creator>Lopez-Caracheo, Francisco ; Camacho, Antonio Bazaldua ; Perez-Ramirez, Carlos A. ; Valtierra-Rodriguez, Martin ; Dominguez-Gonzalez, Aurelio ; Amezquita-Sanchez, Juan P.</creator><creatorcontrib>Lopez-Caracheo, Francisco ; Camacho, Antonio Bazaldua ; Perez-Ramirez, Carlos A. ; Valtierra-Rodriguez, Martin ; Dominguez-Gonzalez, Aurelio ; Amezquita-Sanchez, Juan P.</creatorcontrib><description>Sudden cardiac death (SCD) is a disease that can be regarded as one of the principal death causes in the society. Hence, if the SCD event can be predicted in the earliest stage possible, it will allow saving people lives because they will receive timely medical procedures. In this paper, a methodology to predict SCD of an automatic manner using ECG signals, fractal dimension (FD), and artificial neural networks is presented. Three FD methods are investigated, Higuchi fractal dimension, Box dimension, and Katz fractal dimension. The effectiveness of the proposed methodology for predicting a SCD event is demonstrated using a database of 38 patients, 20 with SCD and 18 normal, provided by MIT-BIH (Boston's Beth Israel Hospital). The results show an accuracy of 91.4% 14 minutes prior to SCD event.</description><identifier>EISSN: 2573-0770</identifier><identifier>EISBN: 1538659352</identifier><identifier>EISBN: 9781538659359</identifier><identifier>DOI: 10.1109/ROPEC.2018.8661371</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analysis of variance ; Artificial neural networks ; Death ; ECG signals ; Electrocardiography ; Fractal Dimension ; Fractals ; Prediction ; Prediction algorithms ; Sudden Cardiac Death ; Time analysis</subject><ispartof>2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), 2018, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8661371$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23910,23911,25119,27904,54533,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8661371$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lopez-Caracheo, Francisco</creatorcontrib><creatorcontrib>Camacho, Antonio Bazaldua</creatorcontrib><creatorcontrib>Perez-Ramirez, Carlos A.</creatorcontrib><creatorcontrib>Valtierra-Rodriguez, Martin</creatorcontrib><creatorcontrib>Dominguez-Gonzalez, Aurelio</creatorcontrib><creatorcontrib>Amezquita-Sanchez, Juan P.</creatorcontrib><title>Fractal Dimension-based Methodology for Sudden Cardiac Death Prediction</title><title>2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)</title><addtitle>ROPEC</addtitle><description>Sudden cardiac death (SCD) is a disease that can be regarded as one of the principal death causes in the society. Hence, if the SCD event can be predicted in the earliest stage possible, it will allow saving people lives because they will receive timely medical procedures. In this paper, a methodology to predict SCD of an automatic manner using ECG signals, fractal dimension (FD), and artificial neural networks is presented. Three FD methods are investigated, Higuchi fractal dimension, Box dimension, and Katz fractal dimension. The effectiveness of the proposed methodology for predicting a SCD event is demonstrated using a database of 38 patients, 20 with SCD and 18 normal, provided by MIT-BIH (Boston's Beth Israel Hospital). The results show an accuracy of 91.4% 14 minutes prior to SCD event.</description><subject>Analysis of variance</subject><subject>Artificial neural networks</subject><subject>Death</subject><subject>ECG signals</subject><subject>Electrocardiography</subject><subject>Fractal Dimension</subject><subject>Fractals</subject><subject>Prediction</subject><subject>Prediction algorithms</subject><subject>Sudden Cardiac Death</subject><subject>Time analysis</subject><issn>2573-0770</issn><isbn>1538659352</isbn><isbn>9781538659359</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKw0AUQEdBsNb-gG7mBxLvvDNLSR8KlRYf63Izc2NH2kQmcdG_V7CrszoHDmN3AkohwD-8braLupQgqrKyVignLtiNMKqyxisjL9lEGqcKcA6u2WwYvgBASVDamQlbLTOGEQ98no7UDanvigYHivyFxn0f-0P_eeJtn_nbT4zU8RpzTBj4nHDc822mmML4Z92yqxYPA83OnLKP5eK9firWm9Vz_bguknBmLLwGGbRBp1BbqJSPFpoqBA1EHrAxQnspJWiKxutWh0Yr4WzrRAwOW6Gm7P6_m4ho953TEfNpd_5WvyghS2k</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Lopez-Caracheo, Francisco</creator><creator>Camacho, Antonio Bazaldua</creator><creator>Perez-Ramirez, Carlos A.</creator><creator>Valtierra-Rodriguez, Martin</creator><creator>Dominguez-Gonzalez, Aurelio</creator><creator>Amezquita-Sanchez, Juan P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201811</creationdate><title>Fractal Dimension-based Methodology for Sudden Cardiac Death Prediction</title><author>Lopez-Caracheo, Francisco ; Camacho, Antonio Bazaldua ; Perez-Ramirez, Carlos A. ; Valtierra-Rodriguez, Martin ; Dominguez-Gonzalez, Aurelio ; Amezquita-Sanchez, Juan P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9402c45a73a460839d60b8cc40ee90ab514922204ed594f4cb43176f71dc7af13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis of variance</topic><topic>Artificial neural networks</topic><topic>Death</topic><topic>ECG signals</topic><topic>Electrocardiography</topic><topic>Fractal Dimension</topic><topic>Fractals</topic><topic>Prediction</topic><topic>Prediction algorithms</topic><topic>Sudden Cardiac Death</topic><topic>Time analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Lopez-Caracheo, Francisco</creatorcontrib><creatorcontrib>Camacho, Antonio Bazaldua</creatorcontrib><creatorcontrib>Perez-Ramirez, Carlos A.</creatorcontrib><creatorcontrib>Valtierra-Rodriguez, Martin</creatorcontrib><creatorcontrib>Dominguez-Gonzalez, Aurelio</creatorcontrib><creatorcontrib>Amezquita-Sanchez, Juan P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lopez-Caracheo, Francisco</au><au>Camacho, Antonio Bazaldua</au><au>Perez-Ramirez, Carlos A.</au><au>Valtierra-Rodriguez, Martin</au><au>Dominguez-Gonzalez, Aurelio</au><au>Amezquita-Sanchez, Juan P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fractal Dimension-based Methodology for Sudden Cardiac Death Prediction</atitle><btitle>2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)</btitle><stitle>ROPEC</stitle><date>2018-11</date><risdate>2018</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2573-0770</eissn><eisbn>1538659352</eisbn><eisbn>9781538659359</eisbn><abstract>Sudden cardiac death (SCD) is a disease that can be regarded as one of the principal death causes in the society. Hence, if the SCD event can be predicted in the earliest stage possible, it will allow saving people lives because they will receive timely medical procedures. In this paper, a methodology to predict SCD of an automatic manner using ECG signals, fractal dimension (FD), and artificial neural networks is presented. Three FD methods are investigated, Higuchi fractal dimension, Box dimension, and Katz fractal dimension. The effectiveness of the proposed methodology for predicting a SCD event is demonstrated using a database of 38 patients, 20 with SCD and 18 normal, provided by MIT-BIH (Boston's Beth Israel Hospital). The results show an accuracy of 91.4% 14 minutes prior to SCD event.</abstract><pub>IEEE</pub><doi>10.1109/ROPEC.2018.8661371</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2573-0770 |
ispartof | 2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), 2018, p.1-6 |
issn | 2573-0770 |
language | eng |
recordid | cdi_ieee_primary_8661371 |
source | IEEE Xplore All Conference Series |
subjects | Analysis of variance Artificial neural networks Death ECG signals Electrocardiography Fractal Dimension Fractals Prediction Prediction algorithms Sudden Cardiac Death Time analysis |
title | Fractal Dimension-based Methodology for Sudden Cardiac Death Prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T10%3A33%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fractal%20Dimension-based%20Methodology%20for%20Sudden%20Cardiac%20Death%20Prediction&rft.btitle=2018%20IEEE%20International%20Autumn%20Meeting%20on%20Power,%20Electronics%20and%20Computing%20(ROPEC)&rft.au=Lopez-Caracheo,%20Francisco&rft.date=2018-11&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2573-0770&rft_id=info:doi/10.1109/ROPEC.2018.8661371&rft.eisbn=1538659352&rft.eisbn_list=9781538659359&rft_dat=%3Cieee_CHZPO%3E8661371%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-9402c45a73a460839d60b8cc40ee90ab514922204ed594f4cb43176f71dc7af13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8661371&rfr_iscdi=true |