Loading…

Classification of Acoustic Events in a Kitchen Environment using Multiband Spectral Entropy

When the context of a scenario is studied with help of audio, distinct problems appear, which entail a challenge for all the acoustic event recognition systems, such as, noise, mixture of different types of sound sources, among others. The methods used for attending these problems are generally focu...

Full description

Saved in:
Bibliographic Details
Main Authors: Manzo-Martinez, Alain, Ramos-Rascon, Amy C., Ramirez-Alonso, Graciela, Gaxiola, Fernando, Cornejo, Raymundo, Camarena-Ibarrola, J. Antonio
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Manzo-Martinez, Alain
Ramos-Rascon, Amy C.
Ramirez-Alonso, Graciela
Gaxiola, Fernando
Cornejo, Raymundo
Camarena-Ibarrola, J. Antonio
description When the context of a scenario is studied with help of audio, distinct problems appear, which entail a challenge for all the acoustic event recognition systems, such as, noise, mixture of different types of sound sources, among others. The methods used for attending these problems are generally focused on two processes; the feature extraction process and the classification process. In this paper we propose to use Multiband Spectral Entropy Signatures (MSES) for extracting features from acoustic events with a background of mixture of sounds occurring in a kitchen environment. MSES takes into account the randomness of the signal, making it more robust to noise, loudness and spectral flatness. To test our proposal, we created a database of a mix-up of triples from a collection of sixteen real world kitchen sounds using 3dB of signal-to-noise rate. Our benchmark in this work is MFCC feature, since it is often used for this issue. With respect to the classification process, we use two similarity distances, cosine distance and Hamming distance. Experimental results indicate that MSES outper forms the MFCC feature in robustness and effectiveness, improving the performance of the classification process.
doi_str_mv 10.1109/ROPEC.2018.8661420
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8661420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8661420</ieee_id><sourcerecordid>8661420</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-628c9010e7cb295f94a093157808ad820334259c4c83d5e3aaf3c2df1b205fc53</originalsourceid><addsrcrecordid>eNotkMtKxDAYhaMgOI7zArrJC7T-SZomWQ6lXnBkxMvKxZCmiUY6aWnSgXl7C87qLM7H4eMgdEMgJwTU3dv2ta5yCkTmsixJQeEMXRHOZMkV4_QcLSgXLAMh4BKtYvwFAEaBFYIv0FfV6Ri980Yn3wfcO7w2_RSTN7g-2JAi9gFr_OyT-bEB1-Hgxz7s5wZP0Ydv_DJ1yTc6tPh9sCaNupuhNPbD8RpdON1FuzrlEn3e1x_VY7bZPjxV603mieApK6k0CghYYRqquFOFBsUIFxKkbuVsygrKlSmMZC23TGvHDG0daShwZzhbotv_XW-t3Q2j3-vxuDt9wf4At9xTTQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Classification of Acoustic Events in a Kitchen Environment using Multiband Spectral Entropy</title><source>IEEE Xplore All Conference Series</source><creator>Manzo-Martinez, Alain ; Ramos-Rascon, Amy C. ; Ramirez-Alonso, Graciela ; Gaxiola, Fernando ; Cornejo, Raymundo ; Camarena-Ibarrola, J. Antonio</creator><creatorcontrib>Manzo-Martinez, Alain ; Ramos-Rascon, Amy C. ; Ramirez-Alonso, Graciela ; Gaxiola, Fernando ; Cornejo, Raymundo ; Camarena-Ibarrola, J. Antonio</creatorcontrib><description>When the context of a scenario is studied with help of audio, distinct problems appear, which entail a challenge for all the acoustic event recognition systems, such as, noise, mixture of different types of sound sources, among others. The methods used for attending these problems are generally focused on two processes; the feature extraction process and the classification process. In this paper we propose to use Multiband Spectral Entropy Signatures (MSES) for extracting features from acoustic events with a background of mixture of sounds occurring in a kitchen environment. MSES takes into account the randomness of the signal, making it more robust to noise, loudness and spectral flatness. To test our proposal, we created a database of a mix-up of triples from a collection of sixteen real world kitchen sounds using 3dB of signal-to-noise rate. Our benchmark in this work is MFCC feature, since it is often used for this issue. With respect to the classification process, we use two similarity distances, cosine distance and Hamming distance. Experimental results indicate that MSES outper forms the MFCC feature in robustness and effectiveness, improving the performance of the classification process.</description><identifier>EISSN: 2573-0770</identifier><identifier>EISBN: 1538659352</identifier><identifier>EISBN: 9781538659359</identifier><identifier>DOI: 10.1109/ROPEC.2018.8661420</identifier><language>eng</language><publisher>IEEE</publisher><subject>acoustic event recognition ; Classification algorithms ; Entropy ; Feature extraction ; Mel frequency cepstral coefficient ; robust feature extraction ; similarity distance ; spectral entropy ; Task analysis</subject><ispartof>2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), 2018, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8661420$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8661420$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Manzo-Martinez, Alain</creatorcontrib><creatorcontrib>Ramos-Rascon, Amy C.</creatorcontrib><creatorcontrib>Ramirez-Alonso, Graciela</creatorcontrib><creatorcontrib>Gaxiola, Fernando</creatorcontrib><creatorcontrib>Cornejo, Raymundo</creatorcontrib><creatorcontrib>Camarena-Ibarrola, J. Antonio</creatorcontrib><title>Classification of Acoustic Events in a Kitchen Environment using Multiband Spectral Entropy</title><title>2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)</title><addtitle>ROPEC</addtitle><description>When the context of a scenario is studied with help of audio, distinct problems appear, which entail a challenge for all the acoustic event recognition systems, such as, noise, mixture of different types of sound sources, among others. The methods used for attending these problems are generally focused on two processes; the feature extraction process and the classification process. In this paper we propose to use Multiband Spectral Entropy Signatures (MSES) for extracting features from acoustic events with a background of mixture of sounds occurring in a kitchen environment. MSES takes into account the randomness of the signal, making it more robust to noise, loudness and spectral flatness. To test our proposal, we created a database of a mix-up of triples from a collection of sixteen real world kitchen sounds using 3dB of signal-to-noise rate. Our benchmark in this work is MFCC feature, since it is often used for this issue. With respect to the classification process, we use two similarity distances, cosine distance and Hamming distance. Experimental results indicate that MSES outper forms the MFCC feature in robustness and effectiveness, improving the performance of the classification process.</description><subject>acoustic event recognition</subject><subject>Classification algorithms</subject><subject>Entropy</subject><subject>Feature extraction</subject><subject>Mel frequency cepstral coefficient</subject><subject>robust feature extraction</subject><subject>similarity distance</subject><subject>spectral entropy</subject><subject>Task analysis</subject><issn>2573-0770</issn><isbn>1538659352</isbn><isbn>9781538659359</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtKxDAYhaMgOI7zArrJC7T-SZomWQ6lXnBkxMvKxZCmiUY6aWnSgXl7C87qLM7H4eMgdEMgJwTU3dv2ta5yCkTmsixJQeEMXRHOZMkV4_QcLSgXLAMh4BKtYvwFAEaBFYIv0FfV6Ri980Yn3wfcO7w2_RSTN7g-2JAi9gFr_OyT-bEB1-Hgxz7s5wZP0Ydv_DJ1yTc6tPh9sCaNupuhNPbD8RpdON1FuzrlEn3e1x_VY7bZPjxV603mieApK6k0CghYYRqquFOFBsUIFxKkbuVsygrKlSmMZC23TGvHDG0daShwZzhbotv_XW-t3Q2j3-vxuDt9wf4At9xTTQ</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Manzo-Martinez, Alain</creator><creator>Ramos-Rascon, Amy C.</creator><creator>Ramirez-Alonso, Graciela</creator><creator>Gaxiola, Fernando</creator><creator>Cornejo, Raymundo</creator><creator>Camarena-Ibarrola, J. Antonio</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201811</creationdate><title>Classification of Acoustic Events in a Kitchen Environment using Multiband Spectral Entropy</title><author>Manzo-Martinez, Alain ; Ramos-Rascon, Amy C. ; Ramirez-Alonso, Graciela ; Gaxiola, Fernando ; Cornejo, Raymundo ; Camarena-Ibarrola, J. Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-628c9010e7cb295f94a093157808ad820334259c4c83d5e3aaf3c2df1b205fc53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>acoustic event recognition</topic><topic>Classification algorithms</topic><topic>Entropy</topic><topic>Feature extraction</topic><topic>Mel frequency cepstral coefficient</topic><topic>robust feature extraction</topic><topic>similarity distance</topic><topic>spectral entropy</topic><topic>Task analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Manzo-Martinez, Alain</creatorcontrib><creatorcontrib>Ramos-Rascon, Amy C.</creatorcontrib><creatorcontrib>Ramirez-Alonso, Graciela</creatorcontrib><creatorcontrib>Gaxiola, Fernando</creatorcontrib><creatorcontrib>Cornejo, Raymundo</creatorcontrib><creatorcontrib>Camarena-Ibarrola, J. Antonio</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Manzo-Martinez, Alain</au><au>Ramos-Rascon, Amy C.</au><au>Ramirez-Alonso, Graciela</au><au>Gaxiola, Fernando</au><au>Cornejo, Raymundo</au><au>Camarena-Ibarrola, J. Antonio</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Classification of Acoustic Events in a Kitchen Environment using Multiband Spectral Entropy</atitle><btitle>2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)</btitle><stitle>ROPEC</stitle><date>2018-11</date><risdate>2018</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2573-0770</eissn><eisbn>1538659352</eisbn><eisbn>9781538659359</eisbn><abstract>When the context of a scenario is studied with help of audio, distinct problems appear, which entail a challenge for all the acoustic event recognition systems, such as, noise, mixture of different types of sound sources, among others. The methods used for attending these problems are generally focused on two processes; the feature extraction process and the classification process. In this paper we propose to use Multiband Spectral Entropy Signatures (MSES) for extracting features from acoustic events with a background of mixture of sounds occurring in a kitchen environment. MSES takes into account the randomness of the signal, making it more robust to noise, loudness and spectral flatness. To test our proposal, we created a database of a mix-up of triples from a collection of sixteen real world kitchen sounds using 3dB of signal-to-noise rate. Our benchmark in this work is MFCC feature, since it is often used for this issue. With respect to the classification process, we use two similarity distances, cosine distance and Hamming distance. Experimental results indicate that MSES outper forms the MFCC feature in robustness and effectiveness, improving the performance of the classification process.</abstract><pub>IEEE</pub><doi>10.1109/ROPEC.2018.8661420</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2573-0770
ispartof 2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), 2018, p.1-6
issn 2573-0770
language eng
recordid cdi_ieee_primary_8661420
source IEEE Xplore All Conference Series
subjects acoustic event recognition
Classification algorithms
Entropy
Feature extraction
Mel frequency cepstral coefficient
robust feature extraction
similarity distance
spectral entropy
Task analysis
title Classification of Acoustic Events in a Kitchen Environment using Multiband Spectral Entropy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A43%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Classification%20of%20Acoustic%20Events%20in%20a%20Kitchen%20Environment%20using%20Multiband%20Spectral%20Entropy&rft.btitle=2018%20IEEE%20International%20Autumn%20Meeting%20on%20Power,%20Electronics%20and%20Computing%20(ROPEC)&rft.au=Manzo-Martinez,%20Alain&rft.date=2018-11&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2573-0770&rft_id=info:doi/10.1109/ROPEC.2018.8661420&rft.eisbn=1538659352&rft.eisbn_list=9781538659359&rft_dat=%3Cieee_CHZPO%3E8661420%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-628c9010e7cb295f94a093157808ad820334259c4c83d5e3aaf3c2df1b205fc53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8661420&rfr_iscdi=true