Loading…
Two-Level Switches for Advanced Time-Division Multiplexing
Superconducting quantum interference device (SQUID)-based time-division multiplexing (TDM) is a mature and widely implemented technology used to read out transition-edge sensor arrays. As the number of pixels in modern arrays continues to increase, a higher multiplexing factor is required to reduce...
Saved in:
Published in: | IEEE transactions on applied superconductivity 2019-08, Vol.29 (5), p.1-5 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Superconducting quantum interference device (SQUID)-based time-division multiplexing (TDM) is a mature and widely implemented technology used to read out transition-edge sensor arrays. As the number of pixels in modern arrays continues to increase, a higher multiplexing factor is required to reduce the number of wires and amplifier channels. However, as the multiplexing factor is increased, the number of row-select wires (used to turn on a row of TDM SQUIDs in a two-dimensional configuration) also increases, limiting the reduction in array wires. We present a more advanced TDM architecture that implements multi-level switching between subgroups of pixels. We show that this technique can dramatically reduce the number of required row-select lines. We also present the design, fabrication, and testing of a TDM multiplexer incorporating a two-level switch, which implements a second switch for each group of ten TDM pixels. In this implementation, a multiplexing factor of 100 can be addressed using ten group-select wiring pairs and ten row-select wiring pairs. We demonstrate multiplexer functionality and present measured operating margins of this new TDM multiplexer. |
---|---|
ISSN: | 1051-8223 1558-2515 |
DOI: | 10.1109/TASC.2019.2903394 |