Loading…

Two-Level Switches for Advanced Time-Division Multiplexing

Superconducting quantum interference device (SQUID)-based time-division multiplexing (TDM) is a mature and widely implemented technology used to read out transition-edge sensor arrays. As the number of pixels in modern arrays continues to increase, a higher multiplexing factor is required to reduce...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on applied superconductivity 2019-08, Vol.29 (5), p.1-5
Main Authors: Dawson, Carl S., Chaudhuri, Saptarshi, Titus, Charles J., Hsiao-Mei Cho, Denison, Edward V., Doriese, W. Bertrand, Durkin, Malcolm, FitzGerald, Connor T., Hilton, Gene C., Irwin, Kent D., Li, Dale, O'Neil, Galen C., Reintsema, Carl D., Steffen, Zach, Stevens, Robert W., Swetz, Daniel S., Ullom, Joel N., Vale, Leila R., Weber, Joel C., Young, Betty A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-a667e62f49e84467ddbe1dcd723b28b5e96dc00bd5487d6a604322b190d97d163
cites cdi_FETCH-LOGICAL-c363t-a667e62f49e84467ddbe1dcd723b28b5e96dc00bd5487d6a604322b190d97d163
container_end_page 5
container_issue 5
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 29
creator Dawson, Carl S.
Chaudhuri, Saptarshi
Titus, Charles J.
Hsiao-Mei Cho
Denison, Edward V.
Doriese, W. Bertrand
Durkin, Malcolm
FitzGerald, Connor T.
Hilton, Gene C.
Irwin, Kent D.
Li, Dale
O'Neil, Galen C.
Reintsema, Carl D.
Steffen, Zach
Stevens, Robert W.
Swetz, Daniel S.
Ullom, Joel N.
Vale, Leila R.
Weber, Joel C.
Young, Betty A.
description Superconducting quantum interference device (SQUID)-based time-division multiplexing (TDM) is a mature and widely implemented technology used to read out transition-edge sensor arrays. As the number of pixels in modern arrays continues to increase, a higher multiplexing factor is required to reduce the number of wires and amplifier channels. However, as the multiplexing factor is increased, the number of row-select wires (used to turn on a row of TDM SQUIDs in a two-dimensional configuration) also increases, limiting the reduction in array wires. We present a more advanced TDM architecture that implements multi-level switching between subgroups of pixels. We show that this technique can dramatically reduce the number of required row-select lines. We also present the design, fabrication, and testing of a TDM multiplexer incorporating a two-level switch, which implements a second switch for each group of ten TDM pixels. In this implementation, a multiplexing factor of 100 can be addressed using ten group-select wiring pairs and ten row-select wiring pairs. We demonstrate multiplexer functionality and present measured operating margins of this new TDM multiplexer.
doi_str_mv 10.1109/TASC.2019.2903394
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8661660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8661660</ieee_id><sourcerecordid>2203419052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-a667e62f49e84467ddbe1dcd723b28b5e96dc00bd5487d6a604322b190d97d163</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYhNBOsUv2Ozq8pTKmLRsLYSe0JdpXGJ0xb-nkStWM1dnHs1OghdEzwhBOv7fLqYTSgmekI1ZkzzEzQiQqiUCiJO-4wFSRWl7BxdxLjCmHDFxQg95PuQzmEHdbLY-84uISZVaJOp2xWNBZfkfg3po9_56EOTvG_rzm9q-PHN1yU6q4o6wtXxjtHn81M-e03nHy9vs-k8tUyyLi2kzEDSimtQnMvMuRKIsy6jrKSqFKClsxiXTnCVOVlIzBmlJdHY6cwRycbo9rAbYudNtL4Du7ShacB2hgiqlBiguwO0acP3FmJnVmHbNv1fhlLMeD8naE-RA2XbEGMLldm0fl20v4ZgM3g0g0czeDRHj33n5tDxAPDPKymJlJj9AaLwbJk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203419052</pqid></control><display><type>article</type><title>Two-Level Switches for Advanced Time-Division Multiplexing</title><source>IEEE Xplore (Online service)</source><creator>Dawson, Carl S. ; Chaudhuri, Saptarshi ; Titus, Charles J. ; Hsiao-Mei Cho ; Denison, Edward V. ; Doriese, W. Bertrand ; Durkin, Malcolm ; FitzGerald, Connor T. ; Hilton, Gene C. ; Irwin, Kent D. ; Li, Dale ; O'Neil, Galen C. ; Reintsema, Carl D. ; Steffen, Zach ; Stevens, Robert W. ; Swetz, Daniel S. ; Ullom, Joel N. ; Vale, Leila R. ; Weber, Joel C. ; Young, Betty A.</creator><creatorcontrib>Dawson, Carl S. ; Chaudhuri, Saptarshi ; Titus, Charles J. ; Hsiao-Mei Cho ; Denison, Edward V. ; Doriese, W. Bertrand ; Durkin, Malcolm ; FitzGerald, Connor T. ; Hilton, Gene C. ; Irwin, Kent D. ; Li, Dale ; O'Neil, Galen C. ; Reintsema, Carl D. ; Steffen, Zach ; Stevens, Robert W. ; Swetz, Daniel S. ; Ullom, Joel N. ; Vale, Leila R. ; Weber, Joel C. ; Young, Betty A. ; SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><description>Superconducting quantum interference device (SQUID)-based time-division multiplexing (TDM) is a mature and widely implemented technology used to read out transition-edge sensor arrays. As the number of pixels in modern arrays continues to increase, a higher multiplexing factor is required to reduce the number of wires and amplifier channels. However, as the multiplexing factor is increased, the number of row-select wires (used to turn on a row of TDM SQUIDs in a two-dimensional configuration) also increases, limiting the reduction in array wires. We present a more advanced TDM architecture that implements multi-level switching between subgroups of pixels. We show that this technique can dramatically reduce the number of required row-select lines. We also present the design, fabrication, and testing of a TDM multiplexer incorporating a two-level switch, which implements a second switch for each group of ten TDM pixels. In this implementation, a multiplexing factor of 100 can be addressed using ten group-select wiring pairs and ten row-select wiring pairs. We demonstrate multiplexer functionality and present measured operating margins of this new TDM multiplexer.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2019.2903394</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Current measurement ; Ethernet ; Multiplexing ; Pixels ; Resistance ; Sensor arrays ; SQUIDs ; Subgroups ; superconducting electronics ; Superconducting quantum interference devices ; Switches ; Time division multiplexing ; transition-edge sensors ; Wires ; Wiring</subject><ispartof>IEEE transactions on applied superconductivity, 2019-08, Vol.29 (5), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-a667e62f49e84467ddbe1dcd723b28b5e96dc00bd5487d6a604322b190d97d163</citedby><cites>FETCH-LOGICAL-c363t-a667e62f49e84467ddbe1dcd723b28b5e96dc00bd5487d6a604322b190d97d163</cites><orcidid>0000-0001-5640-2525 ; 0000-0001-6312-8552 ; 0000-0003-4939-076X ; 0000-0003-1107-6441 ; 0000-0002-9403-373X ; 0000000156402525 ; 0000000311076441 ; 000000029403373X ; 000000034939076X ; 0000000163128552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8661660$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1528856$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dawson, Carl S.</creatorcontrib><creatorcontrib>Chaudhuri, Saptarshi</creatorcontrib><creatorcontrib>Titus, Charles J.</creatorcontrib><creatorcontrib>Hsiao-Mei Cho</creatorcontrib><creatorcontrib>Denison, Edward V.</creatorcontrib><creatorcontrib>Doriese, W. Bertrand</creatorcontrib><creatorcontrib>Durkin, Malcolm</creatorcontrib><creatorcontrib>FitzGerald, Connor T.</creatorcontrib><creatorcontrib>Hilton, Gene C.</creatorcontrib><creatorcontrib>Irwin, Kent D.</creatorcontrib><creatorcontrib>Li, Dale</creatorcontrib><creatorcontrib>O'Neil, Galen C.</creatorcontrib><creatorcontrib>Reintsema, Carl D.</creatorcontrib><creatorcontrib>Steffen, Zach</creatorcontrib><creatorcontrib>Stevens, Robert W.</creatorcontrib><creatorcontrib>Swetz, Daniel S.</creatorcontrib><creatorcontrib>Ullom, Joel N.</creatorcontrib><creatorcontrib>Vale, Leila R.</creatorcontrib><creatorcontrib>Weber, Joel C.</creatorcontrib><creatorcontrib>Young, Betty A.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><title>Two-Level Switches for Advanced Time-Division Multiplexing</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Superconducting quantum interference device (SQUID)-based time-division multiplexing (TDM) is a mature and widely implemented technology used to read out transition-edge sensor arrays. As the number of pixels in modern arrays continues to increase, a higher multiplexing factor is required to reduce the number of wires and amplifier channels. However, as the multiplexing factor is increased, the number of row-select wires (used to turn on a row of TDM SQUIDs in a two-dimensional configuration) also increases, limiting the reduction in array wires. We present a more advanced TDM architecture that implements multi-level switching between subgroups of pixels. We show that this technique can dramatically reduce the number of required row-select lines. We also present the design, fabrication, and testing of a TDM multiplexer incorporating a two-level switch, which implements a second switch for each group of ten TDM pixels. In this implementation, a multiplexing factor of 100 can be addressed using ten group-select wiring pairs and ten row-select wiring pairs. We demonstrate multiplexer functionality and present measured operating margins of this new TDM multiplexer.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Current measurement</subject><subject>Ethernet</subject><subject>Multiplexing</subject><subject>Pixels</subject><subject>Resistance</subject><subject>Sensor arrays</subject><subject>SQUIDs</subject><subject>Subgroups</subject><subject>superconducting electronics</subject><subject>Superconducting quantum interference devices</subject><subject>Switches</subject><subject>Time division multiplexing</subject><subject>transition-edge sensors</subject><subject>Wires</subject><subject>Wiring</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqXwAYhNBOsUv2Ozq8pTKmLRsLYSe0JdpXGJ0xb-nkStWM1dnHs1OghdEzwhBOv7fLqYTSgmekI1ZkzzEzQiQqiUCiJO-4wFSRWl7BxdxLjCmHDFxQg95PuQzmEHdbLY-84uISZVaJOp2xWNBZfkfg3po9_56EOTvG_rzm9q-PHN1yU6q4o6wtXxjtHn81M-e03nHy9vs-k8tUyyLi2kzEDSimtQnMvMuRKIsy6jrKSqFKClsxiXTnCVOVlIzBmlJdHY6cwRycbo9rAbYudNtL4Du7ShacB2hgiqlBiguwO0acP3FmJnVmHbNv1fhlLMeD8naE-RA2XbEGMLldm0fl20v4ZgM3g0g0czeDRHj33n5tDxAPDPKymJlJj9AaLwbJk</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Dawson, Carl S.</creator><creator>Chaudhuri, Saptarshi</creator><creator>Titus, Charles J.</creator><creator>Hsiao-Mei Cho</creator><creator>Denison, Edward V.</creator><creator>Doriese, W. Bertrand</creator><creator>Durkin, Malcolm</creator><creator>FitzGerald, Connor T.</creator><creator>Hilton, Gene C.</creator><creator>Irwin, Kent D.</creator><creator>Li, Dale</creator><creator>O'Neil, Galen C.</creator><creator>Reintsema, Carl D.</creator><creator>Steffen, Zach</creator><creator>Stevens, Robert W.</creator><creator>Swetz, Daniel S.</creator><creator>Ullom, Joel N.</creator><creator>Vale, Leila R.</creator><creator>Weber, Joel C.</creator><creator>Young, Betty A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5640-2525</orcidid><orcidid>https://orcid.org/0000-0001-6312-8552</orcidid><orcidid>https://orcid.org/0000-0003-4939-076X</orcidid><orcidid>https://orcid.org/0000-0003-1107-6441</orcidid><orcidid>https://orcid.org/0000-0002-9403-373X</orcidid><orcidid>https://orcid.org/0000000156402525</orcidid><orcidid>https://orcid.org/0000000311076441</orcidid><orcidid>https://orcid.org/000000029403373X</orcidid><orcidid>https://orcid.org/000000034939076X</orcidid><orcidid>https://orcid.org/0000000163128552</orcidid></search><sort><creationdate>20190801</creationdate><title>Two-Level Switches for Advanced Time-Division Multiplexing</title><author>Dawson, Carl S. ; Chaudhuri, Saptarshi ; Titus, Charles J. ; Hsiao-Mei Cho ; Denison, Edward V. ; Doriese, W. Bertrand ; Durkin, Malcolm ; FitzGerald, Connor T. ; Hilton, Gene C. ; Irwin, Kent D. ; Li, Dale ; O'Neil, Galen C. ; Reintsema, Carl D. ; Steffen, Zach ; Stevens, Robert W. ; Swetz, Daniel S. ; Ullom, Joel N. ; Vale, Leila R. ; Weber, Joel C. ; Young, Betty A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-a667e62f49e84467ddbe1dcd723b28b5e96dc00bd5487d6a604322b190d97d163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Current measurement</topic><topic>Ethernet</topic><topic>Multiplexing</topic><topic>Pixels</topic><topic>Resistance</topic><topic>Sensor arrays</topic><topic>SQUIDs</topic><topic>Subgroups</topic><topic>superconducting electronics</topic><topic>Superconducting quantum interference devices</topic><topic>Switches</topic><topic>Time division multiplexing</topic><topic>transition-edge sensors</topic><topic>Wires</topic><topic>Wiring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dawson, Carl S.</creatorcontrib><creatorcontrib>Chaudhuri, Saptarshi</creatorcontrib><creatorcontrib>Titus, Charles J.</creatorcontrib><creatorcontrib>Hsiao-Mei Cho</creatorcontrib><creatorcontrib>Denison, Edward V.</creatorcontrib><creatorcontrib>Doriese, W. Bertrand</creatorcontrib><creatorcontrib>Durkin, Malcolm</creatorcontrib><creatorcontrib>FitzGerald, Connor T.</creatorcontrib><creatorcontrib>Hilton, Gene C.</creatorcontrib><creatorcontrib>Irwin, Kent D.</creatorcontrib><creatorcontrib>Li, Dale</creatorcontrib><creatorcontrib>O'Neil, Galen C.</creatorcontrib><creatorcontrib>Reintsema, Carl D.</creatorcontrib><creatorcontrib>Steffen, Zach</creatorcontrib><creatorcontrib>Stevens, Robert W.</creatorcontrib><creatorcontrib>Swetz, Daniel S.</creatorcontrib><creatorcontrib>Ullom, Joel N.</creatorcontrib><creatorcontrib>Vale, Leila R.</creatorcontrib><creatorcontrib>Weber, Joel C.</creatorcontrib><creatorcontrib>Young, Betty A.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dawson, Carl S.</au><au>Chaudhuri, Saptarshi</au><au>Titus, Charles J.</au><au>Hsiao-Mei Cho</au><au>Denison, Edward V.</au><au>Doriese, W. Bertrand</au><au>Durkin, Malcolm</au><au>FitzGerald, Connor T.</au><au>Hilton, Gene C.</au><au>Irwin, Kent D.</au><au>Li, Dale</au><au>O'Neil, Galen C.</au><au>Reintsema, Carl D.</au><au>Steffen, Zach</au><au>Stevens, Robert W.</au><au>Swetz, Daniel S.</au><au>Ullom, Joel N.</au><au>Vale, Leila R.</au><au>Weber, Joel C.</au><au>Young, Betty A.</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Level Switches for Advanced Time-Division Multiplexing</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>29</volume><issue>5</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Superconducting quantum interference device (SQUID)-based time-division multiplexing (TDM) is a mature and widely implemented technology used to read out transition-edge sensor arrays. As the number of pixels in modern arrays continues to increase, a higher multiplexing factor is required to reduce the number of wires and amplifier channels. However, as the multiplexing factor is increased, the number of row-select wires (used to turn on a row of TDM SQUIDs in a two-dimensional configuration) also increases, limiting the reduction in array wires. We present a more advanced TDM architecture that implements multi-level switching between subgroups of pixels. We show that this technique can dramatically reduce the number of required row-select lines. We also present the design, fabrication, and testing of a TDM multiplexer incorporating a two-level switch, which implements a second switch for each group of ten TDM pixels. In this implementation, a multiplexing factor of 100 can be addressed using ten group-select wiring pairs and ten row-select wiring pairs. We demonstrate multiplexer functionality and present measured operating margins of this new TDM multiplexer.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2019.2903394</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5640-2525</orcidid><orcidid>https://orcid.org/0000-0001-6312-8552</orcidid><orcidid>https://orcid.org/0000-0003-4939-076X</orcidid><orcidid>https://orcid.org/0000-0003-1107-6441</orcidid><orcidid>https://orcid.org/0000-0002-9403-373X</orcidid><orcidid>https://orcid.org/0000000156402525</orcidid><orcidid>https://orcid.org/0000000311076441</orcidid><orcidid>https://orcid.org/000000029403373X</orcidid><orcidid>https://orcid.org/000000034939076X</orcidid><orcidid>https://orcid.org/0000000163128552</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2019-08, Vol.29 (5), p.1-5
issn 1051-8223
1558-2515
language eng
recordid cdi_ieee_primary_8661660
source IEEE Xplore (Online service)
subjects CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Current measurement
Ethernet
Multiplexing
Pixels
Resistance
Sensor arrays
SQUIDs
Subgroups
superconducting electronics
Superconducting quantum interference devices
Switches
Time division multiplexing
transition-edge sensors
Wires
Wiring
title Two-Level Switches for Advanced Time-Division Multiplexing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A06%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Level%20Switches%20for%20Advanced%20Time-Division%20Multiplexing&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Dawson,%20Carl%20S.&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2019-08-01&rft.volume=29&rft.issue=5&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2019.2903394&rft_dat=%3Cproquest_ieee_%3E2203419052%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-a667e62f49e84467ddbe1dcd723b28b5e96dc00bd5487d6a604322b190d97d163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2203419052&rft_id=info:pmid/&rft_ieee_id=8661660&rfr_iscdi=true