Loading…
Two-Level Switches for Advanced Time-Division Multiplexing
Superconducting quantum interference device (SQUID)-based time-division multiplexing (TDM) is a mature and widely implemented technology used to read out transition-edge sensor arrays. As the number of pixels in modern arrays continues to increase, a higher multiplexing factor is required to reduce...
Saved in:
Published in: | IEEE transactions on applied superconductivity 2019-08, Vol.29 (5), p.1-5 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-a667e62f49e84467ddbe1dcd723b28b5e96dc00bd5487d6a604322b190d97d163 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-a667e62f49e84467ddbe1dcd723b28b5e96dc00bd5487d6a604322b190d97d163 |
container_end_page | 5 |
container_issue | 5 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 29 |
creator | Dawson, Carl S. Chaudhuri, Saptarshi Titus, Charles J. Hsiao-Mei Cho Denison, Edward V. Doriese, W. Bertrand Durkin, Malcolm FitzGerald, Connor T. Hilton, Gene C. Irwin, Kent D. Li, Dale O'Neil, Galen C. Reintsema, Carl D. Steffen, Zach Stevens, Robert W. Swetz, Daniel S. Ullom, Joel N. Vale, Leila R. Weber, Joel C. Young, Betty A. |
description | Superconducting quantum interference device (SQUID)-based time-division multiplexing (TDM) is a mature and widely implemented technology used to read out transition-edge sensor arrays. As the number of pixels in modern arrays continues to increase, a higher multiplexing factor is required to reduce the number of wires and amplifier channels. However, as the multiplexing factor is increased, the number of row-select wires (used to turn on a row of TDM SQUIDs in a two-dimensional configuration) also increases, limiting the reduction in array wires. We present a more advanced TDM architecture that implements multi-level switching between subgroups of pixels. We show that this technique can dramatically reduce the number of required row-select lines. We also present the design, fabrication, and testing of a TDM multiplexer incorporating a two-level switch, which implements a second switch for each group of ten TDM pixels. In this implementation, a multiplexing factor of 100 can be addressed using ten group-select wiring pairs and ten row-select wiring pairs. We demonstrate multiplexer functionality and present measured operating margins of this new TDM multiplexer. |
doi_str_mv | 10.1109/TASC.2019.2903394 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8661660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8661660</ieee_id><sourcerecordid>2203419052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-a667e62f49e84467ddbe1dcd723b28b5e96dc00bd5487d6a604322b190d97d163</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYhNBOsUv2Ozq8pTKmLRsLYSe0JdpXGJ0xb-nkStWM1dnHs1OghdEzwhBOv7fLqYTSgmekI1ZkzzEzQiQqiUCiJO-4wFSRWl7BxdxLjCmHDFxQg95PuQzmEHdbLY-84uISZVaJOp2xWNBZfkfg3po9_56EOTvG_rzm9q-PHN1yU6q4o6wtXxjtHn81M-e03nHy9vs-k8tUyyLi2kzEDSimtQnMvMuRKIsy6jrKSqFKClsxiXTnCVOVlIzBmlJdHY6cwRycbo9rAbYudNtL4Du7ShacB2hgiqlBiguwO0acP3FmJnVmHbNv1fhlLMeD8naE-RA2XbEGMLldm0fl20v4ZgM3g0g0czeDRHj33n5tDxAPDPKymJlJj9AaLwbJk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203419052</pqid></control><display><type>article</type><title>Two-Level Switches for Advanced Time-Division Multiplexing</title><source>IEEE Xplore (Online service)</source><creator>Dawson, Carl S. ; Chaudhuri, Saptarshi ; Titus, Charles J. ; Hsiao-Mei Cho ; Denison, Edward V. ; Doriese, W. Bertrand ; Durkin, Malcolm ; FitzGerald, Connor T. ; Hilton, Gene C. ; Irwin, Kent D. ; Li, Dale ; O'Neil, Galen C. ; Reintsema, Carl D. ; Steffen, Zach ; Stevens, Robert W. ; Swetz, Daniel S. ; Ullom, Joel N. ; Vale, Leila R. ; Weber, Joel C. ; Young, Betty A.</creator><creatorcontrib>Dawson, Carl S. ; Chaudhuri, Saptarshi ; Titus, Charles J. ; Hsiao-Mei Cho ; Denison, Edward V. ; Doriese, W. Bertrand ; Durkin, Malcolm ; FitzGerald, Connor T. ; Hilton, Gene C. ; Irwin, Kent D. ; Li, Dale ; O'Neil, Galen C. ; Reintsema, Carl D. ; Steffen, Zach ; Stevens, Robert W. ; Swetz, Daniel S. ; Ullom, Joel N. ; Vale, Leila R. ; Weber, Joel C. ; Young, Betty A. ; SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><description>Superconducting quantum interference device (SQUID)-based time-division multiplexing (TDM) is a mature and widely implemented technology used to read out transition-edge sensor arrays. As the number of pixels in modern arrays continues to increase, a higher multiplexing factor is required to reduce the number of wires and amplifier channels. However, as the multiplexing factor is increased, the number of row-select wires (used to turn on a row of TDM SQUIDs in a two-dimensional configuration) also increases, limiting the reduction in array wires. We present a more advanced TDM architecture that implements multi-level switching between subgroups of pixels. We show that this technique can dramatically reduce the number of required row-select lines. We also present the design, fabrication, and testing of a TDM multiplexer incorporating a two-level switch, which implements a second switch for each group of ten TDM pixels. In this implementation, a multiplexing factor of 100 can be addressed using ten group-select wiring pairs and ten row-select wiring pairs. We demonstrate multiplexer functionality and present measured operating margins of this new TDM multiplexer.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2019.2903394</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Current measurement ; Ethernet ; Multiplexing ; Pixels ; Resistance ; Sensor arrays ; SQUIDs ; Subgroups ; superconducting electronics ; Superconducting quantum interference devices ; Switches ; Time division multiplexing ; transition-edge sensors ; Wires ; Wiring</subject><ispartof>IEEE transactions on applied superconductivity, 2019-08, Vol.29 (5), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-a667e62f49e84467ddbe1dcd723b28b5e96dc00bd5487d6a604322b190d97d163</citedby><cites>FETCH-LOGICAL-c363t-a667e62f49e84467ddbe1dcd723b28b5e96dc00bd5487d6a604322b190d97d163</cites><orcidid>0000-0001-5640-2525 ; 0000-0001-6312-8552 ; 0000-0003-4939-076X ; 0000-0003-1107-6441 ; 0000-0002-9403-373X ; 0000000156402525 ; 0000000311076441 ; 000000029403373X ; 000000034939076X ; 0000000163128552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8661660$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1528856$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dawson, Carl S.</creatorcontrib><creatorcontrib>Chaudhuri, Saptarshi</creatorcontrib><creatorcontrib>Titus, Charles J.</creatorcontrib><creatorcontrib>Hsiao-Mei Cho</creatorcontrib><creatorcontrib>Denison, Edward V.</creatorcontrib><creatorcontrib>Doriese, W. Bertrand</creatorcontrib><creatorcontrib>Durkin, Malcolm</creatorcontrib><creatorcontrib>FitzGerald, Connor T.</creatorcontrib><creatorcontrib>Hilton, Gene C.</creatorcontrib><creatorcontrib>Irwin, Kent D.</creatorcontrib><creatorcontrib>Li, Dale</creatorcontrib><creatorcontrib>O'Neil, Galen C.</creatorcontrib><creatorcontrib>Reintsema, Carl D.</creatorcontrib><creatorcontrib>Steffen, Zach</creatorcontrib><creatorcontrib>Stevens, Robert W.</creatorcontrib><creatorcontrib>Swetz, Daniel S.</creatorcontrib><creatorcontrib>Ullom, Joel N.</creatorcontrib><creatorcontrib>Vale, Leila R.</creatorcontrib><creatorcontrib>Weber, Joel C.</creatorcontrib><creatorcontrib>Young, Betty A.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><title>Two-Level Switches for Advanced Time-Division Multiplexing</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Superconducting quantum interference device (SQUID)-based time-division multiplexing (TDM) is a mature and widely implemented technology used to read out transition-edge sensor arrays. As the number of pixels in modern arrays continues to increase, a higher multiplexing factor is required to reduce the number of wires and amplifier channels. However, as the multiplexing factor is increased, the number of row-select wires (used to turn on a row of TDM SQUIDs in a two-dimensional configuration) also increases, limiting the reduction in array wires. We present a more advanced TDM architecture that implements multi-level switching between subgroups of pixels. We show that this technique can dramatically reduce the number of required row-select lines. We also present the design, fabrication, and testing of a TDM multiplexer incorporating a two-level switch, which implements a second switch for each group of ten TDM pixels. In this implementation, a multiplexing factor of 100 can be addressed using ten group-select wiring pairs and ten row-select wiring pairs. We demonstrate multiplexer functionality and present measured operating margins of this new TDM multiplexer.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Current measurement</subject><subject>Ethernet</subject><subject>Multiplexing</subject><subject>Pixels</subject><subject>Resistance</subject><subject>Sensor arrays</subject><subject>SQUIDs</subject><subject>Subgroups</subject><subject>superconducting electronics</subject><subject>Superconducting quantum interference devices</subject><subject>Switches</subject><subject>Time division multiplexing</subject><subject>transition-edge sensors</subject><subject>Wires</subject><subject>Wiring</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqXwAYhNBOsUv2Ozq8pTKmLRsLYSe0JdpXGJ0xb-nkStWM1dnHs1OghdEzwhBOv7fLqYTSgmekI1ZkzzEzQiQqiUCiJO-4wFSRWl7BxdxLjCmHDFxQg95PuQzmEHdbLY-84uISZVaJOp2xWNBZfkfg3po9_56EOTvG_rzm9q-PHN1yU6q4o6wtXxjtHn81M-e03nHy9vs-k8tUyyLi2kzEDSimtQnMvMuRKIsy6jrKSqFKClsxiXTnCVOVlIzBmlJdHY6cwRycbo9rAbYudNtL4Du7ShacB2hgiqlBiguwO0acP3FmJnVmHbNv1fhlLMeD8naE-RA2XbEGMLldm0fl20v4ZgM3g0g0czeDRHj33n5tDxAPDPKymJlJj9AaLwbJk</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Dawson, Carl S.</creator><creator>Chaudhuri, Saptarshi</creator><creator>Titus, Charles J.</creator><creator>Hsiao-Mei Cho</creator><creator>Denison, Edward V.</creator><creator>Doriese, W. Bertrand</creator><creator>Durkin, Malcolm</creator><creator>FitzGerald, Connor T.</creator><creator>Hilton, Gene C.</creator><creator>Irwin, Kent D.</creator><creator>Li, Dale</creator><creator>O'Neil, Galen C.</creator><creator>Reintsema, Carl D.</creator><creator>Steffen, Zach</creator><creator>Stevens, Robert W.</creator><creator>Swetz, Daniel S.</creator><creator>Ullom, Joel N.</creator><creator>Vale, Leila R.</creator><creator>Weber, Joel C.</creator><creator>Young, Betty A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5640-2525</orcidid><orcidid>https://orcid.org/0000-0001-6312-8552</orcidid><orcidid>https://orcid.org/0000-0003-4939-076X</orcidid><orcidid>https://orcid.org/0000-0003-1107-6441</orcidid><orcidid>https://orcid.org/0000-0002-9403-373X</orcidid><orcidid>https://orcid.org/0000000156402525</orcidid><orcidid>https://orcid.org/0000000311076441</orcidid><orcidid>https://orcid.org/000000029403373X</orcidid><orcidid>https://orcid.org/000000034939076X</orcidid><orcidid>https://orcid.org/0000000163128552</orcidid></search><sort><creationdate>20190801</creationdate><title>Two-Level Switches for Advanced Time-Division Multiplexing</title><author>Dawson, Carl S. ; Chaudhuri, Saptarshi ; Titus, Charles J. ; Hsiao-Mei Cho ; Denison, Edward V. ; Doriese, W. Bertrand ; Durkin, Malcolm ; FitzGerald, Connor T. ; Hilton, Gene C. ; Irwin, Kent D. ; Li, Dale ; O'Neil, Galen C. ; Reintsema, Carl D. ; Steffen, Zach ; Stevens, Robert W. ; Swetz, Daniel S. ; Ullom, Joel N. ; Vale, Leila R. ; Weber, Joel C. ; Young, Betty A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-a667e62f49e84467ddbe1dcd723b28b5e96dc00bd5487d6a604322b190d97d163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Current measurement</topic><topic>Ethernet</topic><topic>Multiplexing</topic><topic>Pixels</topic><topic>Resistance</topic><topic>Sensor arrays</topic><topic>SQUIDs</topic><topic>Subgroups</topic><topic>superconducting electronics</topic><topic>Superconducting quantum interference devices</topic><topic>Switches</topic><topic>Time division multiplexing</topic><topic>transition-edge sensors</topic><topic>Wires</topic><topic>Wiring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dawson, Carl S.</creatorcontrib><creatorcontrib>Chaudhuri, Saptarshi</creatorcontrib><creatorcontrib>Titus, Charles J.</creatorcontrib><creatorcontrib>Hsiao-Mei Cho</creatorcontrib><creatorcontrib>Denison, Edward V.</creatorcontrib><creatorcontrib>Doriese, W. Bertrand</creatorcontrib><creatorcontrib>Durkin, Malcolm</creatorcontrib><creatorcontrib>FitzGerald, Connor T.</creatorcontrib><creatorcontrib>Hilton, Gene C.</creatorcontrib><creatorcontrib>Irwin, Kent D.</creatorcontrib><creatorcontrib>Li, Dale</creatorcontrib><creatorcontrib>O'Neil, Galen C.</creatorcontrib><creatorcontrib>Reintsema, Carl D.</creatorcontrib><creatorcontrib>Steffen, Zach</creatorcontrib><creatorcontrib>Stevens, Robert W.</creatorcontrib><creatorcontrib>Swetz, Daniel S.</creatorcontrib><creatorcontrib>Ullom, Joel N.</creatorcontrib><creatorcontrib>Vale, Leila R.</creatorcontrib><creatorcontrib>Weber, Joel C.</creatorcontrib><creatorcontrib>Young, Betty A.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dawson, Carl S.</au><au>Chaudhuri, Saptarshi</au><au>Titus, Charles J.</au><au>Hsiao-Mei Cho</au><au>Denison, Edward V.</au><au>Doriese, W. Bertrand</au><au>Durkin, Malcolm</au><au>FitzGerald, Connor T.</au><au>Hilton, Gene C.</au><au>Irwin, Kent D.</au><au>Li, Dale</au><au>O'Neil, Galen C.</au><au>Reintsema, Carl D.</au><au>Steffen, Zach</au><au>Stevens, Robert W.</au><au>Swetz, Daniel S.</au><au>Ullom, Joel N.</au><au>Vale, Leila R.</au><au>Weber, Joel C.</au><au>Young, Betty A.</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Level Switches for Advanced Time-Division Multiplexing</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>29</volume><issue>5</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Superconducting quantum interference device (SQUID)-based time-division multiplexing (TDM) is a mature and widely implemented technology used to read out transition-edge sensor arrays. As the number of pixels in modern arrays continues to increase, a higher multiplexing factor is required to reduce the number of wires and amplifier channels. However, as the multiplexing factor is increased, the number of row-select wires (used to turn on a row of TDM SQUIDs in a two-dimensional configuration) also increases, limiting the reduction in array wires. We present a more advanced TDM architecture that implements multi-level switching between subgroups of pixels. We show that this technique can dramatically reduce the number of required row-select lines. We also present the design, fabrication, and testing of a TDM multiplexer incorporating a two-level switch, which implements a second switch for each group of ten TDM pixels. In this implementation, a multiplexing factor of 100 can be addressed using ten group-select wiring pairs and ten row-select wiring pairs. We demonstrate multiplexer functionality and present measured operating margins of this new TDM multiplexer.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2019.2903394</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5640-2525</orcidid><orcidid>https://orcid.org/0000-0001-6312-8552</orcidid><orcidid>https://orcid.org/0000-0003-4939-076X</orcidid><orcidid>https://orcid.org/0000-0003-1107-6441</orcidid><orcidid>https://orcid.org/0000-0002-9403-373X</orcidid><orcidid>https://orcid.org/0000000156402525</orcidid><orcidid>https://orcid.org/0000000311076441</orcidid><orcidid>https://orcid.org/000000029403373X</orcidid><orcidid>https://orcid.org/000000034939076X</orcidid><orcidid>https://orcid.org/0000000163128552</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2019-08, Vol.29 (5), p.1-5 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_ieee_primary_8661660 |
source | IEEE Xplore (Online service) |
subjects | CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Current measurement Ethernet Multiplexing Pixels Resistance Sensor arrays SQUIDs Subgroups superconducting electronics Superconducting quantum interference devices Switches Time division multiplexing transition-edge sensors Wires Wiring |
title | Two-Level Switches for Advanced Time-Division Multiplexing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A06%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Level%20Switches%20for%20Advanced%20Time-Division%20Multiplexing&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Dawson,%20Carl%20S.&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2019-08-01&rft.volume=29&rft.issue=5&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2019.2903394&rft_dat=%3Cproquest_ieee_%3E2203419052%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-a667e62f49e84467ddbe1dcd723b28b5e96dc00bd5487d6a604322b190d97d163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2203419052&rft_id=info:pmid/&rft_ieee_id=8661660&rfr_iscdi=true |