Loading…
Resonant Microelectromechanical Receiver
This paper reports a practical demonstration of a proposed resonant microelectromechanical receiver for low power wake-up receiver (WuRx) applications. The proposed system is made of three main components: a piezoelectric based acoustic resonator, an electrostatically-driven MEMS resonant demodulato...
Saved in:
Published in: | Journal of microelectromechanical systems 2019-06, Vol.28 (3), p.327-343 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c295t-1c3bdcf5c6351636869923450640c8a44e34049aa5d37bd33227761bfc804cda3 |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-1c3bdcf5c6351636869923450640c8a44e34049aa5d37bd33227761bfc804cda3 |
container_end_page | 343 |
container_issue | 3 |
container_start_page | 327 |
container_title | Journal of microelectromechanical systems |
container_volume | 28 |
creator | Kochhar, Abhay Galanko, Mary E. Soliman, Mazen Abdelsalam, Hoda Colombo, Luca Lin, Yi-Chung Vidal-Alvarez, Gabriel Mukherjee, Tamal Weldon, Jeffrey Paramesh, Jeyanandh Fedder, Gary K. Piazza, Gianluca |
description | This paper reports a practical demonstration of a proposed resonant microelectromechanical receiver for low power wake-up receiver (WuRx) applications. The proposed system is made of three main components: a piezoelectric based acoustic resonator, an electrostatically-driven MEMS resonant demodulator, and a CMOS baseband trigger circuit. The filtering, amplification, and demodulation of the incoming signal are performed through the piezoelectric resonator and the resonant demodulator, ensuring zero power consumption for both the radio frequency (RF) and mixing stages. The only power consumption occurs at baseband by operating the CMOS circuit in deep subthreshold. This system utilizes a lithium niobate piezoelectric resonator possessing a figure of merit of around 650 and achieving voltage gain of 28 dB. A resonant demodulator fabricated in the Epi-Seal MEMS process is utilized to attain a conversion efficiency of 13.8 nA/V 2 . In the trigger circuit, an amplifier with transimpedance >200~\text{M} {\Omega } is utilized to sense the output current from the demodulator. An intermediate buffer and a multiple stage passive latch rectifier are utilized to generate the wake-up signal through a Schmitt trigger. The demonstrated system achieves −40.2 dBm sensitivity for a 44 kHz amplitude-modulated 50 MHz RF signal while consuming 38.75 nW. This architecture is a promising step toward a WuRx capable of achieving higher interference rejection, high sensitivity, and nW range power consumption at a high data rate. [2018-0261] |
doi_str_mv | 10.1109/JMEMS.2019.2898984 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8662632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8662632</ieee_id><sourcerecordid>2235825573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-1c3bdcf5c6351636869923450640c8a44e34049aa5d37bd33227761bfc804cda3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt_QC8FL162ZjL5PErxkxah6jmk2Vnc0u7WZCv4793aInOYObzPzPAwdgl8DMDd7cvsfvY2FhzcWFjXlzxiA3ASCg7KHvczV6YwoMwpO8t5yTlIafWA3cwpt01outGsjqmlFcUutWuKn6GpY1iN5hSp_qZ0zk6qsMp0cehD9vFw_z55Kqavj8-Tu2kRhVNdAREXZaxU1KhAo7baOYFScS15tEFKQsmlC0GVaBYlohDGaFhU0XIZy4BDdr3fu0nt15Zy55ftNjX9SS8EKiuUMtinxD7V_5xzospvUr0O6ccD9zsj_s-I3xnxByM9dLWHaiL6B6zWQqPAX4tIWxM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235825573</pqid></control><display><type>article</type><title>Resonant Microelectromechanical Receiver</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kochhar, Abhay ; Galanko, Mary E. ; Soliman, Mazen ; Abdelsalam, Hoda ; Colombo, Luca ; Lin, Yi-Chung ; Vidal-Alvarez, Gabriel ; Mukherjee, Tamal ; Weldon, Jeffrey ; Paramesh, Jeyanandh ; Fedder, Gary K. ; Piazza, Gianluca</creator><creatorcontrib>Kochhar, Abhay ; Galanko, Mary E. ; Soliman, Mazen ; Abdelsalam, Hoda ; Colombo, Luca ; Lin, Yi-Chung ; Vidal-Alvarez, Gabriel ; Mukherjee, Tamal ; Weldon, Jeffrey ; Paramesh, Jeyanandh ; Fedder, Gary K. ; Piazza, Gianluca</creatorcontrib><description>This paper reports a practical demonstration of a proposed resonant microelectromechanical receiver for low power wake-up receiver (WuRx) applications. The proposed system is made of three main components: a piezoelectric based acoustic resonator, an electrostatically-driven MEMS resonant demodulator, and a CMOS baseband trigger circuit. The filtering, amplification, and demodulation of the incoming signal are performed through the piezoelectric resonator and the resonant demodulator, ensuring zero power consumption for both the radio frequency (RF) and mixing stages. The only power consumption occurs at baseband by operating the CMOS circuit in deep subthreshold. This system utilizes a lithium niobate piezoelectric resonator possessing a figure of merit of around 650 and achieving voltage gain of 28 dB. A resonant demodulator fabricated in the Epi-Seal MEMS process is utilized to attain a conversion efficiency of 13.8 nA/V 2 . In the trigger circuit, an amplifier with transimpedance <inline-formula> <tex-math notation="LaTeX">>200~\text{M} {\Omega } </tex-math></inline-formula> is utilized to sense the output current from the demodulator. An intermediate buffer and a multiple stage passive latch rectifier are utilized to generate the wake-up signal through a Schmitt trigger. The demonstrated system achieves −40.2 dBm sensitivity for a 44 kHz amplitude-modulated 50 MHz RF signal while consuming 38.75 nW. This architecture is a promising step toward a WuRx capable of achieving higher interference rejection, high sensitivity, and nW range power consumption at a high data rate. [2018-0261]</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2019.2898984</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitance ; CMOS ; Demodulation ; epi-seal ; Figure of merit ; IoT ; lithium niobate ; Lithium niobates ; low power wake-up receiver ; MEMS ; MEMS demodulator ; Micromechanical devices ; mixer-filter ; passive latch rectifier ; piezoelectric resonators ; Piezoelectricity ; Power consumption ; Radio frequency ; Receivers ; Rectifiers ; Resonant frequency ; Resonant microelectromechanical receiver ; Resonators ; RLC circuits ; schmitt trigger ; Sensitivity ; S₀ mode ; TIA ; Trigger circuits ; Voltage gain ; Voltage measurement</subject><ispartof>Journal of microelectromechanical systems, 2019-06, Vol.28 (3), p.327-343</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-1c3bdcf5c6351636869923450640c8a44e34049aa5d37bd33227761bfc804cda3</citedby><cites>FETCH-LOGICAL-c295t-1c3bdcf5c6351636869923450640c8a44e34049aa5d37bd33227761bfc804cda3</cites><orcidid>0000-0002-2069-4949 ; 0000-0002-2380-5210 ; 0000-0002-6089-0047 ; 0000-0002-2829-4683 ; 0000-0003-1303-9353 ; 0000-0002-7769-3963 ; 0000-0001-7108-9522 ; 0000-0003-1970-5847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8662632$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Kochhar, Abhay</creatorcontrib><creatorcontrib>Galanko, Mary E.</creatorcontrib><creatorcontrib>Soliman, Mazen</creatorcontrib><creatorcontrib>Abdelsalam, Hoda</creatorcontrib><creatorcontrib>Colombo, Luca</creatorcontrib><creatorcontrib>Lin, Yi-Chung</creatorcontrib><creatorcontrib>Vidal-Alvarez, Gabriel</creatorcontrib><creatorcontrib>Mukherjee, Tamal</creatorcontrib><creatorcontrib>Weldon, Jeffrey</creatorcontrib><creatorcontrib>Paramesh, Jeyanandh</creatorcontrib><creatorcontrib>Fedder, Gary K.</creatorcontrib><creatorcontrib>Piazza, Gianluca</creatorcontrib><title>Resonant Microelectromechanical Receiver</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>This paper reports a practical demonstration of a proposed resonant microelectromechanical receiver for low power wake-up receiver (WuRx) applications. The proposed system is made of three main components: a piezoelectric based acoustic resonator, an electrostatically-driven MEMS resonant demodulator, and a CMOS baseband trigger circuit. The filtering, amplification, and demodulation of the incoming signal are performed through the piezoelectric resonator and the resonant demodulator, ensuring zero power consumption for both the radio frequency (RF) and mixing stages. The only power consumption occurs at baseband by operating the CMOS circuit in deep subthreshold. This system utilizes a lithium niobate piezoelectric resonator possessing a figure of merit of around 650 and achieving voltage gain of 28 dB. A resonant demodulator fabricated in the Epi-Seal MEMS process is utilized to attain a conversion efficiency of 13.8 nA/V 2 . In the trigger circuit, an amplifier with transimpedance <inline-formula> <tex-math notation="LaTeX">>200~\text{M} {\Omega } </tex-math></inline-formula> is utilized to sense the output current from the demodulator. An intermediate buffer and a multiple stage passive latch rectifier are utilized to generate the wake-up signal through a Schmitt trigger. The demonstrated system achieves −40.2 dBm sensitivity for a 44 kHz amplitude-modulated 50 MHz RF signal while consuming 38.75 nW. This architecture is a promising step toward a WuRx capable of achieving higher interference rejection, high sensitivity, and nW range power consumption at a high data rate. [2018-0261]</description><subject>Capacitance</subject><subject>CMOS</subject><subject>Demodulation</subject><subject>epi-seal</subject><subject>Figure of merit</subject><subject>IoT</subject><subject>lithium niobate</subject><subject>Lithium niobates</subject><subject>low power wake-up receiver</subject><subject>MEMS</subject><subject>MEMS demodulator</subject><subject>Micromechanical devices</subject><subject>mixer-filter</subject><subject>passive latch rectifier</subject><subject>piezoelectric resonators</subject><subject>Piezoelectricity</subject><subject>Power consumption</subject><subject>Radio frequency</subject><subject>Receivers</subject><subject>Rectifiers</subject><subject>Resonant frequency</subject><subject>Resonant microelectromechanical receiver</subject><subject>Resonators</subject><subject>RLC circuits</subject><subject>schmitt trigger</subject><subject>Sensitivity</subject><subject>S₀ mode</subject><subject>TIA</subject><subject>Trigger circuits</subject><subject>Voltage gain</subject><subject>Voltage measurement</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKt_QC8FL162ZjL5PErxkxah6jmk2Vnc0u7WZCv4793aInOYObzPzPAwdgl8DMDd7cvsfvY2FhzcWFjXlzxiA3ASCg7KHvczV6YwoMwpO8t5yTlIafWA3cwpt01outGsjqmlFcUutWuKn6GpY1iN5hSp_qZ0zk6qsMp0cehD9vFw_z55Kqavj8-Tu2kRhVNdAREXZaxU1KhAo7baOYFScS15tEFKQsmlC0GVaBYlohDGaFhU0XIZy4BDdr3fu0nt15Zy55ftNjX9SS8EKiuUMtinxD7V_5xzospvUr0O6ccD9zsj_s-I3xnxByM9dLWHaiL6B6zWQqPAX4tIWxM</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Kochhar, Abhay</creator><creator>Galanko, Mary E.</creator><creator>Soliman, Mazen</creator><creator>Abdelsalam, Hoda</creator><creator>Colombo, Luca</creator><creator>Lin, Yi-Chung</creator><creator>Vidal-Alvarez, Gabriel</creator><creator>Mukherjee, Tamal</creator><creator>Weldon, Jeffrey</creator><creator>Paramesh, Jeyanandh</creator><creator>Fedder, Gary K.</creator><creator>Piazza, Gianluca</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2069-4949</orcidid><orcidid>https://orcid.org/0000-0002-2380-5210</orcidid><orcidid>https://orcid.org/0000-0002-6089-0047</orcidid><orcidid>https://orcid.org/0000-0002-2829-4683</orcidid><orcidid>https://orcid.org/0000-0003-1303-9353</orcidid><orcidid>https://orcid.org/0000-0002-7769-3963</orcidid><orcidid>https://orcid.org/0000-0001-7108-9522</orcidid><orcidid>https://orcid.org/0000-0003-1970-5847</orcidid></search><sort><creationdate>20190601</creationdate><title>Resonant Microelectromechanical Receiver</title><author>Kochhar, Abhay ; Galanko, Mary E. ; Soliman, Mazen ; Abdelsalam, Hoda ; Colombo, Luca ; Lin, Yi-Chung ; Vidal-Alvarez, Gabriel ; Mukherjee, Tamal ; Weldon, Jeffrey ; Paramesh, Jeyanandh ; Fedder, Gary K. ; Piazza, Gianluca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-1c3bdcf5c6351636869923450640c8a44e34049aa5d37bd33227761bfc804cda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Capacitance</topic><topic>CMOS</topic><topic>Demodulation</topic><topic>epi-seal</topic><topic>Figure of merit</topic><topic>IoT</topic><topic>lithium niobate</topic><topic>Lithium niobates</topic><topic>low power wake-up receiver</topic><topic>MEMS</topic><topic>MEMS demodulator</topic><topic>Micromechanical devices</topic><topic>mixer-filter</topic><topic>passive latch rectifier</topic><topic>piezoelectric resonators</topic><topic>Piezoelectricity</topic><topic>Power consumption</topic><topic>Radio frequency</topic><topic>Receivers</topic><topic>Rectifiers</topic><topic>Resonant frequency</topic><topic>Resonant microelectromechanical receiver</topic><topic>Resonators</topic><topic>RLC circuits</topic><topic>schmitt trigger</topic><topic>Sensitivity</topic><topic>S₀ mode</topic><topic>TIA</topic><topic>Trigger circuits</topic><topic>Voltage gain</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kochhar, Abhay</creatorcontrib><creatorcontrib>Galanko, Mary E.</creatorcontrib><creatorcontrib>Soliman, Mazen</creatorcontrib><creatorcontrib>Abdelsalam, Hoda</creatorcontrib><creatorcontrib>Colombo, Luca</creatorcontrib><creatorcontrib>Lin, Yi-Chung</creatorcontrib><creatorcontrib>Vidal-Alvarez, Gabriel</creatorcontrib><creatorcontrib>Mukherjee, Tamal</creatorcontrib><creatorcontrib>Weldon, Jeffrey</creatorcontrib><creatorcontrib>Paramesh, Jeyanandh</creatorcontrib><creatorcontrib>Fedder, Gary K.</creatorcontrib><creatorcontrib>Piazza, Gianluca</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kochhar, Abhay</au><au>Galanko, Mary E.</au><au>Soliman, Mazen</au><au>Abdelsalam, Hoda</au><au>Colombo, Luca</au><au>Lin, Yi-Chung</au><au>Vidal-Alvarez, Gabriel</au><au>Mukherjee, Tamal</au><au>Weldon, Jeffrey</au><au>Paramesh, Jeyanandh</au><au>Fedder, Gary K.</au><au>Piazza, Gianluca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resonant Microelectromechanical Receiver</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>28</volume><issue>3</issue><spage>327</spage><epage>343</epage><pages>327-343</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>This paper reports a practical demonstration of a proposed resonant microelectromechanical receiver for low power wake-up receiver (WuRx) applications. The proposed system is made of three main components: a piezoelectric based acoustic resonator, an electrostatically-driven MEMS resonant demodulator, and a CMOS baseband trigger circuit. The filtering, amplification, and demodulation of the incoming signal are performed through the piezoelectric resonator and the resonant demodulator, ensuring zero power consumption for both the radio frequency (RF) and mixing stages. The only power consumption occurs at baseband by operating the CMOS circuit in deep subthreshold. This system utilizes a lithium niobate piezoelectric resonator possessing a figure of merit of around 650 and achieving voltage gain of 28 dB. A resonant demodulator fabricated in the Epi-Seal MEMS process is utilized to attain a conversion efficiency of 13.8 nA/V 2 . In the trigger circuit, an amplifier with transimpedance <inline-formula> <tex-math notation="LaTeX">>200~\text{M} {\Omega } </tex-math></inline-formula> is utilized to sense the output current from the demodulator. An intermediate buffer and a multiple stage passive latch rectifier are utilized to generate the wake-up signal through a Schmitt trigger. The demonstrated system achieves −40.2 dBm sensitivity for a 44 kHz amplitude-modulated 50 MHz RF signal while consuming 38.75 nW. This architecture is a promising step toward a WuRx capable of achieving higher interference rejection, high sensitivity, and nW range power consumption at a high data rate. [2018-0261]</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2019.2898984</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2069-4949</orcidid><orcidid>https://orcid.org/0000-0002-2380-5210</orcidid><orcidid>https://orcid.org/0000-0002-6089-0047</orcidid><orcidid>https://orcid.org/0000-0002-2829-4683</orcidid><orcidid>https://orcid.org/0000-0003-1303-9353</orcidid><orcidid>https://orcid.org/0000-0002-7769-3963</orcidid><orcidid>https://orcid.org/0000-0001-7108-9522</orcidid><orcidid>https://orcid.org/0000-0003-1970-5847</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7157 |
ispartof | Journal of microelectromechanical systems, 2019-06, Vol.28 (3), p.327-343 |
issn | 1057-7157 1941-0158 |
language | eng |
recordid | cdi_ieee_primary_8662632 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Capacitance CMOS Demodulation epi-seal Figure of merit IoT lithium niobate Lithium niobates low power wake-up receiver MEMS MEMS demodulator Micromechanical devices mixer-filter passive latch rectifier piezoelectric resonators Piezoelectricity Power consumption Radio frequency Receivers Rectifiers Resonant frequency Resonant microelectromechanical receiver Resonators RLC circuits schmitt trigger Sensitivity S₀ mode TIA Trigger circuits Voltage gain Voltage measurement |
title | Resonant Microelectromechanical Receiver |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A44%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resonant%20Microelectromechanical%20Receiver&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Kochhar,%20Abhay&rft.date=2019-06-01&rft.volume=28&rft.issue=3&rft.spage=327&rft.epage=343&rft.pages=327-343&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2019.2898984&rft_dat=%3Cproquest_ieee_%3E2235825573%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-1c3bdcf5c6351636869923450640c8a44e34049aa5d37bd33227761bfc804cda3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2235825573&rft_id=info:pmid/&rft_ieee_id=8662632&rfr_iscdi=true |