Loading…
A Hybrid Regression Model for Day-Ahead Energy Price Forecasting
Accurate forecast of the hourly spot price of electricity plays a vital role in energy trading decisions. However, due to the complex nature of the power system, coupled with the involvement of multi-variable, the spot prices are volatile and often difficult to forecast. Traditional statistical mode...
Saved in:
Published in: | IEEE access 2019, Vol.7, p.36833-36842 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-2c84d861206d7202a7d3f24d74c73e2e9a6d19e81f4bab251052d255936c422a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-2c84d861206d7202a7d3f24d74c73e2e9a6d19e81f4bab251052d255936c422a3 |
container_end_page | 36842 |
container_issue | |
container_start_page | 36833 |
container_title | IEEE access |
container_volume | 7 |
creator | Bissing, Daniel Klein, Michael T. Chinnathambi, Radhakrishnan Angamuthu Selvaraj, Daisy Flora Ranganathan, Prakash |
description | Accurate forecast of the hourly spot price of electricity plays a vital role in energy trading decisions. However, due to the complex nature of the power system, coupled with the involvement of multi-variable, the spot prices are volatile and often difficult to forecast. Traditional statistical models have limitations in improving forecasting accuracies and reliably quantifying the spot electricity price under uncertain market conditions. This paper presents a hybrid model that combines the results from multiple linear regression (MLR) model with an auto-regressive integrated moving average (ARIMA) and Holt-Winters models for better forecasts. The proposed method is tested for the Iberian electricity market data set by forecasting the hourly day-ahead spot price with dataset duration of 7, 14, 30, 90, and 180 days. The results indicate that the hybrid model outperforms the benchmark models and offers promising results under most of the testing scenarios. |
doi_str_mv | 10.1109/ACCESS.2019.2904432 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8665889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8665889</ieee_id><doaj_id>oai_doaj_org_article_319cdb16dd6e4838b7efe5ebfeadd57c</doaj_id><sourcerecordid>2455599114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-2c84d861206d7202a7d3f24d74c73e2e9a6d19e81f4bab251052d255936c422a3</originalsourceid><addsrcrecordid>eNpNUE1PwkAQbYwmEuQXcGniubjf3b3ZIAgJRiN63mx3p7UEWdyFQ_-9xRLiXGbyMu-9mZckY4wmGCP1UEyns_V6QhBWE6IQY5RcJQOChcoop-L633ybjGLcoK5kB_F8kDwW6aItQ-PSd6gDxNj4XfriHWzTyof0ybRZ8QXGpbMdhLpN30JjIZ37ANbEQ7Or75KbymwjjM59mHzOZx_TRbZ6fV5Oi1VmGZKHjFjJnBSYIOFygojJHa0IczmzOQUCygiHFUhcsdKUhGPEiSOcKyosI8TQYbLsdZ03G70PzbcJrfam0X-AD7U24dDYLWiKlXUlFs4JYJLKMocKOJRV94fjue207nutffA_R4gHvfHHsOvO14TxzlRhzLot2m_Z4GMMUF1cMdKn5HWfvD4lr8_Jd6xxz2oA4MKQQnApFf0FR4x9SQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455599114</pqid></control><display><type>article</type><title>A Hybrid Regression Model for Day-Ahead Energy Price Forecasting</title><source>IEEE Open Access Journals</source><creator>Bissing, Daniel ; Klein, Michael T. ; Chinnathambi, Radhakrishnan Angamuthu ; Selvaraj, Daisy Flora ; Ranganathan, Prakash</creator><creatorcontrib>Bissing, Daniel ; Klein, Michael T. ; Chinnathambi, Radhakrishnan Angamuthu ; Selvaraj, Daisy Flora ; Ranganathan, Prakash</creatorcontrib><description>Accurate forecast of the hourly spot price of electricity plays a vital role in energy trading decisions. However, due to the complex nature of the power system, coupled with the involvement of multi-variable, the spot prices are volatile and often difficult to forecast. Traditional statistical models have limitations in improving forecasting accuracies and reliably quantifying the spot electricity price under uncertain market conditions. This paper presents a hybrid model that combines the results from multiple linear regression (MLR) model with an auto-regressive integrated moving average (ARIMA) and Holt-Winters models for better forecasts. The proposed method is tested for the Iberian electricity market data set by forecasting the hourly day-ahead spot price with dataset duration of 7, 14, 30, 90, and 180 days. The results indicate that the hybrid model outperforms the benchmark models and offers promising results under most of the testing scenarios.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2904432</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>ARIMA ; Autoregressive models ; Autoregressive processes ; Economic conditions ; Economic forecasting ; Electric power systems ; Electricity ; Electricity pricing ; energy price ; Forecasting ; Holt-Winters ; hybrid model and regression ; Linear regression ; Mathematical model ; Power systems ; Predictive models ; Regression models ; Statistical analysis ; Statistical models ; Support vector machines</subject><ispartof>IEEE access, 2019, Vol.7, p.36833-36842</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-2c84d861206d7202a7d3f24d74c73e2e9a6d19e81f4bab251052d255936c422a3</citedby><cites>FETCH-LOGICAL-c408t-2c84d861206d7202a7d3f24d74c73e2e9a6d19e81f4bab251052d255936c422a3</cites><orcidid>0000-0001-5176-587X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8665889$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Bissing, Daniel</creatorcontrib><creatorcontrib>Klein, Michael T.</creatorcontrib><creatorcontrib>Chinnathambi, Radhakrishnan Angamuthu</creatorcontrib><creatorcontrib>Selvaraj, Daisy Flora</creatorcontrib><creatorcontrib>Ranganathan, Prakash</creatorcontrib><title>A Hybrid Regression Model for Day-Ahead Energy Price Forecasting</title><title>IEEE access</title><addtitle>Access</addtitle><description>Accurate forecast of the hourly spot price of electricity plays a vital role in energy trading decisions. However, due to the complex nature of the power system, coupled with the involvement of multi-variable, the spot prices are volatile and often difficult to forecast. Traditional statistical models have limitations in improving forecasting accuracies and reliably quantifying the spot electricity price under uncertain market conditions. This paper presents a hybrid model that combines the results from multiple linear regression (MLR) model with an auto-regressive integrated moving average (ARIMA) and Holt-Winters models for better forecasts. The proposed method is tested for the Iberian electricity market data set by forecasting the hourly day-ahead spot price with dataset duration of 7, 14, 30, 90, and 180 days. The results indicate that the hybrid model outperforms the benchmark models and offers promising results under most of the testing scenarios.</description><subject>ARIMA</subject><subject>Autoregressive models</subject><subject>Autoregressive processes</subject><subject>Economic conditions</subject><subject>Economic forecasting</subject><subject>Electric power systems</subject><subject>Electricity</subject><subject>Electricity pricing</subject><subject>energy price</subject><subject>Forecasting</subject><subject>Holt-Winters</subject><subject>hybrid model and regression</subject><subject>Linear regression</subject><subject>Mathematical model</subject><subject>Power systems</subject><subject>Predictive models</subject><subject>Regression models</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Support vector machines</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1PwkAQbYwmEuQXcGniubjf3b3ZIAgJRiN63mx3p7UEWdyFQ_-9xRLiXGbyMu-9mZckY4wmGCP1UEyns_V6QhBWE6IQY5RcJQOChcoop-L633ybjGLcoK5kB_F8kDwW6aItQ-PSd6gDxNj4XfriHWzTyof0ybRZ8QXGpbMdhLpN30JjIZ37ANbEQ7Or75KbymwjjM59mHzOZx_TRbZ6fV5Oi1VmGZKHjFjJnBSYIOFygojJHa0IczmzOQUCygiHFUhcsdKUhGPEiSOcKyosI8TQYbLsdZ03G70PzbcJrfam0X-AD7U24dDYLWiKlXUlFs4JYJLKMocKOJRV94fjue207nutffA_R4gHvfHHsOvO14TxzlRhzLot2m_Z4GMMUF1cMdKn5HWfvD4lr8_Jd6xxz2oA4MKQQnApFf0FR4x9SQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Bissing, Daniel</creator><creator>Klein, Michael T.</creator><creator>Chinnathambi, Radhakrishnan Angamuthu</creator><creator>Selvaraj, Daisy Flora</creator><creator>Ranganathan, Prakash</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5176-587X</orcidid></search><sort><creationdate>2019</creationdate><title>A Hybrid Regression Model for Day-Ahead Energy Price Forecasting</title><author>Bissing, Daniel ; Klein, Michael T. ; Chinnathambi, Radhakrishnan Angamuthu ; Selvaraj, Daisy Flora ; Ranganathan, Prakash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-2c84d861206d7202a7d3f24d74c73e2e9a6d19e81f4bab251052d255936c422a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ARIMA</topic><topic>Autoregressive models</topic><topic>Autoregressive processes</topic><topic>Economic conditions</topic><topic>Economic forecasting</topic><topic>Electric power systems</topic><topic>Electricity</topic><topic>Electricity pricing</topic><topic>energy price</topic><topic>Forecasting</topic><topic>Holt-Winters</topic><topic>hybrid model and regression</topic><topic>Linear regression</topic><topic>Mathematical model</topic><topic>Power systems</topic><topic>Predictive models</topic><topic>Regression models</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bissing, Daniel</creatorcontrib><creatorcontrib>Klein, Michael T.</creatorcontrib><creatorcontrib>Chinnathambi, Radhakrishnan Angamuthu</creatorcontrib><creatorcontrib>Selvaraj, Daisy Flora</creatorcontrib><creatorcontrib>Ranganathan, Prakash</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bissing, Daniel</au><au>Klein, Michael T.</au><au>Chinnathambi, Radhakrishnan Angamuthu</au><au>Selvaraj, Daisy Flora</au><au>Ranganathan, Prakash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Regression Model for Day-Ahead Energy Price Forecasting</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>36833</spage><epage>36842</epage><pages>36833-36842</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Accurate forecast of the hourly spot price of electricity plays a vital role in energy trading decisions. However, due to the complex nature of the power system, coupled with the involvement of multi-variable, the spot prices are volatile and often difficult to forecast. Traditional statistical models have limitations in improving forecasting accuracies and reliably quantifying the spot electricity price under uncertain market conditions. This paper presents a hybrid model that combines the results from multiple linear regression (MLR) model with an auto-regressive integrated moving average (ARIMA) and Holt-Winters models for better forecasts. The proposed method is tested for the Iberian electricity market data set by forecasting the hourly day-ahead spot price with dataset duration of 7, 14, 30, 90, and 180 days. The results indicate that the hybrid model outperforms the benchmark models and offers promising results under most of the testing scenarios.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2904432</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5176-587X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.36833-36842 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_8665889 |
source | IEEE Open Access Journals |
subjects | ARIMA Autoregressive models Autoregressive processes Economic conditions Economic forecasting Electric power systems Electricity Electricity pricing energy price Forecasting Holt-Winters hybrid model and regression Linear regression Mathematical model Power systems Predictive models Regression models Statistical analysis Statistical models Support vector machines |
title | A Hybrid Regression Model for Day-Ahead Energy Price Forecasting |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A27%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Regression%20Model%20for%20Day-Ahead%20Energy%20Price%20Forecasting&rft.jtitle=IEEE%20access&rft.au=Bissing,%20Daniel&rft.date=2019&rft.volume=7&rft.spage=36833&rft.epage=36842&rft.pages=36833-36842&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2904432&rft_dat=%3Cproquest_ieee_%3E2455599114%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-2c84d861206d7202a7d3f24d74c73e2e9a6d19e81f4bab251052d255936c422a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455599114&rft_id=info:pmid/&rft_ieee_id=8665889&rfr_iscdi=true |