Loading…

A Hybrid Regression Model for Day-Ahead Energy Price Forecasting

Accurate forecast of the hourly spot price of electricity plays a vital role in energy trading decisions. However, due to the complex nature of the power system, coupled with the involvement of multi-variable, the spot prices are volatile and often difficult to forecast. Traditional statistical mode...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2019, Vol.7, p.36833-36842
Main Authors: Bissing, Daniel, Klein, Michael T., Chinnathambi, Radhakrishnan Angamuthu, Selvaraj, Daisy Flora, Ranganathan, Prakash
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-2c84d861206d7202a7d3f24d74c73e2e9a6d19e81f4bab251052d255936c422a3
cites cdi_FETCH-LOGICAL-c408t-2c84d861206d7202a7d3f24d74c73e2e9a6d19e81f4bab251052d255936c422a3
container_end_page 36842
container_issue
container_start_page 36833
container_title IEEE access
container_volume 7
creator Bissing, Daniel
Klein, Michael T.
Chinnathambi, Radhakrishnan Angamuthu
Selvaraj, Daisy Flora
Ranganathan, Prakash
description Accurate forecast of the hourly spot price of electricity plays a vital role in energy trading decisions. However, due to the complex nature of the power system, coupled with the involvement of multi-variable, the spot prices are volatile and often difficult to forecast. Traditional statistical models have limitations in improving forecasting accuracies and reliably quantifying the spot electricity price under uncertain market conditions. This paper presents a hybrid model that combines the results from multiple linear regression (MLR) model with an auto-regressive integrated moving average (ARIMA) and Holt-Winters models for better forecasts. The proposed method is tested for the Iberian electricity market data set by forecasting the hourly day-ahead spot price with dataset duration of 7, 14, 30, 90, and 180 days. The results indicate that the hybrid model outperforms the benchmark models and offers promising results under most of the testing scenarios.
doi_str_mv 10.1109/ACCESS.2019.2904432
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8665889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8665889</ieee_id><doaj_id>oai_doaj_org_article_319cdb16dd6e4838b7efe5ebfeadd57c</doaj_id><sourcerecordid>2455599114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-2c84d861206d7202a7d3f24d74c73e2e9a6d19e81f4bab251052d255936c422a3</originalsourceid><addsrcrecordid>eNpNUE1PwkAQbYwmEuQXcGniubjf3b3ZIAgJRiN63mx3p7UEWdyFQ_-9xRLiXGbyMu-9mZckY4wmGCP1UEyns_V6QhBWE6IQY5RcJQOChcoop-L633ybjGLcoK5kB_F8kDwW6aItQ-PSd6gDxNj4XfriHWzTyof0ybRZ8QXGpbMdhLpN30JjIZ37ANbEQ7Or75KbymwjjM59mHzOZx_TRbZ6fV5Oi1VmGZKHjFjJnBSYIOFygojJHa0IczmzOQUCygiHFUhcsdKUhGPEiSOcKyosI8TQYbLsdZ03G70PzbcJrfam0X-AD7U24dDYLWiKlXUlFs4JYJLKMocKOJRV94fjue207nutffA_R4gHvfHHsOvO14TxzlRhzLot2m_Z4GMMUF1cMdKn5HWfvD4lr8_Jd6xxz2oA4MKQQnApFf0FR4x9SQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455599114</pqid></control><display><type>article</type><title>A Hybrid Regression Model for Day-Ahead Energy Price Forecasting</title><source>IEEE Open Access Journals</source><creator>Bissing, Daniel ; Klein, Michael T. ; Chinnathambi, Radhakrishnan Angamuthu ; Selvaraj, Daisy Flora ; Ranganathan, Prakash</creator><creatorcontrib>Bissing, Daniel ; Klein, Michael T. ; Chinnathambi, Radhakrishnan Angamuthu ; Selvaraj, Daisy Flora ; Ranganathan, Prakash</creatorcontrib><description>Accurate forecast of the hourly spot price of electricity plays a vital role in energy trading decisions. However, due to the complex nature of the power system, coupled with the involvement of multi-variable, the spot prices are volatile and often difficult to forecast. Traditional statistical models have limitations in improving forecasting accuracies and reliably quantifying the spot electricity price under uncertain market conditions. This paper presents a hybrid model that combines the results from multiple linear regression (MLR) model with an auto-regressive integrated moving average (ARIMA) and Holt-Winters models for better forecasts. The proposed method is tested for the Iberian electricity market data set by forecasting the hourly day-ahead spot price with dataset duration of 7, 14, 30, 90, and 180 days. The results indicate that the hybrid model outperforms the benchmark models and offers promising results under most of the testing scenarios.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2904432</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>ARIMA ; Autoregressive models ; Autoregressive processes ; Economic conditions ; Economic forecasting ; Electric power systems ; Electricity ; Electricity pricing ; energy price ; Forecasting ; Holt-Winters ; hybrid model and regression ; Linear regression ; Mathematical model ; Power systems ; Predictive models ; Regression models ; Statistical analysis ; Statistical models ; Support vector machines</subject><ispartof>IEEE access, 2019, Vol.7, p.36833-36842</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-2c84d861206d7202a7d3f24d74c73e2e9a6d19e81f4bab251052d255936c422a3</citedby><cites>FETCH-LOGICAL-c408t-2c84d861206d7202a7d3f24d74c73e2e9a6d19e81f4bab251052d255936c422a3</cites><orcidid>0000-0001-5176-587X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8665889$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Bissing, Daniel</creatorcontrib><creatorcontrib>Klein, Michael T.</creatorcontrib><creatorcontrib>Chinnathambi, Radhakrishnan Angamuthu</creatorcontrib><creatorcontrib>Selvaraj, Daisy Flora</creatorcontrib><creatorcontrib>Ranganathan, Prakash</creatorcontrib><title>A Hybrid Regression Model for Day-Ahead Energy Price Forecasting</title><title>IEEE access</title><addtitle>Access</addtitle><description>Accurate forecast of the hourly spot price of electricity plays a vital role in energy trading decisions. However, due to the complex nature of the power system, coupled with the involvement of multi-variable, the spot prices are volatile and often difficult to forecast. Traditional statistical models have limitations in improving forecasting accuracies and reliably quantifying the spot electricity price under uncertain market conditions. This paper presents a hybrid model that combines the results from multiple linear regression (MLR) model with an auto-regressive integrated moving average (ARIMA) and Holt-Winters models for better forecasts. The proposed method is tested for the Iberian electricity market data set by forecasting the hourly day-ahead spot price with dataset duration of 7, 14, 30, 90, and 180 days. The results indicate that the hybrid model outperforms the benchmark models and offers promising results under most of the testing scenarios.</description><subject>ARIMA</subject><subject>Autoregressive models</subject><subject>Autoregressive processes</subject><subject>Economic conditions</subject><subject>Economic forecasting</subject><subject>Electric power systems</subject><subject>Electricity</subject><subject>Electricity pricing</subject><subject>energy price</subject><subject>Forecasting</subject><subject>Holt-Winters</subject><subject>hybrid model and regression</subject><subject>Linear regression</subject><subject>Mathematical model</subject><subject>Power systems</subject><subject>Predictive models</subject><subject>Regression models</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Support vector machines</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1PwkAQbYwmEuQXcGniubjf3b3ZIAgJRiN63mx3p7UEWdyFQ_-9xRLiXGbyMu-9mZckY4wmGCP1UEyns_V6QhBWE6IQY5RcJQOChcoop-L633ybjGLcoK5kB_F8kDwW6aItQ-PSd6gDxNj4XfriHWzTyof0ybRZ8QXGpbMdhLpN30JjIZ37ANbEQ7Or75KbymwjjM59mHzOZx_TRbZ6fV5Oi1VmGZKHjFjJnBSYIOFygojJHa0IczmzOQUCygiHFUhcsdKUhGPEiSOcKyosI8TQYbLsdZ03G70PzbcJrfam0X-AD7U24dDYLWiKlXUlFs4JYJLKMocKOJRV94fjue207nutffA_R4gHvfHHsOvO14TxzlRhzLot2m_Z4GMMUF1cMdKn5HWfvD4lr8_Jd6xxz2oA4MKQQnApFf0FR4x9SQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Bissing, Daniel</creator><creator>Klein, Michael T.</creator><creator>Chinnathambi, Radhakrishnan Angamuthu</creator><creator>Selvaraj, Daisy Flora</creator><creator>Ranganathan, Prakash</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5176-587X</orcidid></search><sort><creationdate>2019</creationdate><title>A Hybrid Regression Model for Day-Ahead Energy Price Forecasting</title><author>Bissing, Daniel ; Klein, Michael T. ; Chinnathambi, Radhakrishnan Angamuthu ; Selvaraj, Daisy Flora ; Ranganathan, Prakash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-2c84d861206d7202a7d3f24d74c73e2e9a6d19e81f4bab251052d255936c422a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ARIMA</topic><topic>Autoregressive models</topic><topic>Autoregressive processes</topic><topic>Economic conditions</topic><topic>Economic forecasting</topic><topic>Electric power systems</topic><topic>Electricity</topic><topic>Electricity pricing</topic><topic>energy price</topic><topic>Forecasting</topic><topic>Holt-Winters</topic><topic>hybrid model and regression</topic><topic>Linear regression</topic><topic>Mathematical model</topic><topic>Power systems</topic><topic>Predictive models</topic><topic>Regression models</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bissing, Daniel</creatorcontrib><creatorcontrib>Klein, Michael T.</creatorcontrib><creatorcontrib>Chinnathambi, Radhakrishnan Angamuthu</creatorcontrib><creatorcontrib>Selvaraj, Daisy Flora</creatorcontrib><creatorcontrib>Ranganathan, Prakash</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bissing, Daniel</au><au>Klein, Michael T.</au><au>Chinnathambi, Radhakrishnan Angamuthu</au><au>Selvaraj, Daisy Flora</au><au>Ranganathan, Prakash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Regression Model for Day-Ahead Energy Price Forecasting</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>36833</spage><epage>36842</epage><pages>36833-36842</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Accurate forecast of the hourly spot price of electricity plays a vital role in energy trading decisions. However, due to the complex nature of the power system, coupled with the involvement of multi-variable, the spot prices are volatile and often difficult to forecast. Traditional statistical models have limitations in improving forecasting accuracies and reliably quantifying the spot electricity price under uncertain market conditions. This paper presents a hybrid model that combines the results from multiple linear regression (MLR) model with an auto-regressive integrated moving average (ARIMA) and Holt-Winters models for better forecasts. The proposed method is tested for the Iberian electricity market data set by forecasting the hourly day-ahead spot price with dataset duration of 7, 14, 30, 90, and 180 days. The results indicate that the hybrid model outperforms the benchmark models and offers promising results under most of the testing scenarios.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2904432</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5176-587X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.36833-36842
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8665889
source IEEE Open Access Journals
subjects ARIMA
Autoregressive models
Autoregressive processes
Economic conditions
Economic forecasting
Electric power systems
Electricity
Electricity pricing
energy price
Forecasting
Holt-Winters
hybrid model and regression
Linear regression
Mathematical model
Power systems
Predictive models
Regression models
Statistical analysis
Statistical models
Support vector machines
title A Hybrid Regression Model for Day-Ahead Energy Price Forecasting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A27%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Regression%20Model%20for%20Day-Ahead%20Energy%20Price%20Forecasting&rft.jtitle=IEEE%20access&rft.au=Bissing,%20Daniel&rft.date=2019&rft.volume=7&rft.spage=36833&rft.epage=36842&rft.pages=36833-36842&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2904432&rft_dat=%3Cproquest_ieee_%3E2455599114%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-2c84d861206d7202a7d3f24d74c73e2e9a6d19e81f4bab251052d255936c422a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455599114&rft_id=info:pmid/&rft_ieee_id=8665889&rfr_iscdi=true