Loading…
Accelerating Spectral Graph Analysis Through Wavefronts of Linear Algebra Operations
The wavefront pattern captures the unfolding of a parallel computation in which data elements are laid out as a logical multidimensional grid and the dependency graph favours a diagonal sweep across the grid. In the emerging area of spectral graph analysis, the computing often consists in a wavefron...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The wavefront pattern captures the unfolding of a parallel computation in which data elements are laid out as a logical multidimensional grid and the dependency graph favours a diagonal sweep across the grid. In the emerging area of spectral graph analysis, the computing often consists in a wavefront running over a tiled matrix, involving expensive linear algebra kernels. While these applications might benefit from parallel heterogeneous platforms (multi-core with GPUs), programming wavefront applications directly with high-performance linear algebra libraries yields code that is complex to write and optimize for the specific application. We advocate a methodology based on two abstractions (linear algebra and parallel pattern-based run-time), that allows to develop portable, self-configuring, and easy-to-profile code on hybrid platforms. |
---|---|
ISSN: | 2377-5750 |
DOI: | 10.1109/EMPDP.2019.8671640 |