Loading…

The Discrete Cosine Transform on Triangles

The discrete cosine transform is a valuable tool in analysis of data on undirected rectangular grids, like images. In this paper it is shown how one can define an analogue of the discrete cosine transform on triangles. This is done by combining algebraic signal processing theory with a specific kind...

Full description

Saved in:
Bibliographic Details
Main Authors: Seifert, Bastian, Huper, Knut
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5026
container_issue
container_start_page 5023
container_title
container_volume
creator Seifert, Bastian
Huper, Knut
description The discrete cosine transform is a valuable tool in analysis of data on undirected rectangular grids, like images. In this paper it is shown how one can define an analogue of the discrete cosine transform on triangles. This is done by combining algebraic signal processing theory with a specific kind of multivariate Chebyshev polynomials. Using a multivariate Christoffel-Darboux formula it is shown how to derive an orthogonal version of the transform.
doi_str_mv 10.1109/ICASSP.2019.8682222
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8682222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8682222</ieee_id><sourcerecordid>8682222</sourcerecordid><originalsourceid>FETCH-LOGICAL-i220t-318ad9531ce7ec135e5023ca842da64f66972212afa6cc8e3edbf58b35d9e7e43</originalsourceid><addsrcrecordid>eNotj01LAzEYhKNQsLb9Bb3sWdg1bz7fHGX9hIJCV_BW0uwbjbS7kvTiv3fBzmWYwzPMMLYG3gBwd_vS3m23b43g4Bo0KCZdsJWzCMo6hyABLtlcSOtqcPzjil2X8s05R6twzm66L6ruUwmZTlS1Y0kDVV32Q4ljPlbjMIXkh88DlSWbRX8otDr7gr0_PnTtc715fZpGbOokBD_VEtD3TksIZCmA1KS5kMGjEr03KhrjrBAgfPQmBCRJ_T5q3Evdu4lQcsHW_72JiHY_OR19_t2dr8k_RitCIQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Discrete Cosine Transform on Triangles</title><source>IEEE Xplore All Conference Series</source><creator>Seifert, Bastian ; Huper, Knut</creator><creatorcontrib>Seifert, Bastian ; Huper, Knut</creatorcontrib><description>The discrete cosine transform is a valuable tool in analysis of data on undirected rectangular grids, like images. In this paper it is shown how one can define an analogue of the discrete cosine transform on triangles. This is done by combining algebraic signal processing theory with a specific kind of multivariate Chebyshev polynomials. Using a multivariate Christoffel-Darboux formula it is shown how to derive an orthogonal version of the transform.</description><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781479981311</identifier><identifier>EISBN: 1479981311</identifier><identifier>DOI: 10.1109/ICASSP.2019.8682222</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algebra ; algebraic signal processing ; Chebyshev approximation ; Christoffel-Darboux formula ; discret cosine transform ; Discrete cosine transforms ; lattice of triangles ; Lattices ; multivariate Chebyshev polynomials ; Signal processing ; Surface treatment</subject><ispartof>ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, p.5023-5026</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8682222$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8682222$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Seifert, Bastian</creatorcontrib><creatorcontrib>Huper, Knut</creatorcontrib><title>The Discrete Cosine Transform on Triangles</title><title>ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>The discrete cosine transform is a valuable tool in analysis of data on undirected rectangular grids, like images. In this paper it is shown how one can define an analogue of the discrete cosine transform on triangles. This is done by combining algebraic signal processing theory with a specific kind of multivariate Chebyshev polynomials. Using a multivariate Christoffel-Darboux formula it is shown how to derive an orthogonal version of the transform.</description><subject>Algebra</subject><subject>algebraic signal processing</subject><subject>Chebyshev approximation</subject><subject>Christoffel-Darboux formula</subject><subject>discret cosine transform</subject><subject>Discrete cosine transforms</subject><subject>lattice of triangles</subject><subject>Lattices</subject><subject>multivariate Chebyshev polynomials</subject><subject>Signal processing</subject><subject>Surface treatment</subject><issn>2379-190X</issn><isbn>9781479981311</isbn><isbn>1479981311</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj01LAzEYhKNQsLb9Bb3sWdg1bz7fHGX9hIJCV_BW0uwbjbS7kvTiv3fBzmWYwzPMMLYG3gBwd_vS3m23b43g4Bo0KCZdsJWzCMo6hyABLtlcSOtqcPzjil2X8s05R6twzm66L6ruUwmZTlS1Y0kDVV32Q4ljPlbjMIXkh88DlSWbRX8otDr7gr0_PnTtc715fZpGbOokBD_VEtD3TksIZCmA1KS5kMGjEr03KhrjrBAgfPQmBCRJ_T5q3Evdu4lQcsHW_72JiHY_OR19_t2dr8k_RitCIQ</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Seifert, Bastian</creator><creator>Huper, Knut</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20190501</creationdate><title>The Discrete Cosine Transform on Triangles</title><author>Seifert, Bastian ; Huper, Knut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i220t-318ad9531ce7ec135e5023ca842da64f66972212afa6cc8e3edbf58b35d9e7e43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>algebraic signal processing</topic><topic>Chebyshev approximation</topic><topic>Christoffel-Darboux formula</topic><topic>discret cosine transform</topic><topic>Discrete cosine transforms</topic><topic>lattice of triangles</topic><topic>Lattices</topic><topic>multivariate Chebyshev polynomials</topic><topic>Signal processing</topic><topic>Surface treatment</topic><toplevel>online_resources</toplevel><creatorcontrib>Seifert, Bastian</creatorcontrib><creatorcontrib>Huper, Knut</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Seifert, Bastian</au><au>Huper, Knut</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Discrete Cosine Transform on Triangles</atitle><btitle>ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2019-05-01</date><risdate>2019</risdate><spage>5023</spage><epage>5026</epage><pages>5023-5026</pages><eissn>2379-190X</eissn><eisbn>9781479981311</eisbn><eisbn>1479981311</eisbn><abstract>The discrete cosine transform is a valuable tool in analysis of data on undirected rectangular grids, like images. In this paper it is shown how one can define an analogue of the discrete cosine transform on triangles. This is done by combining algebraic signal processing theory with a specific kind of multivariate Chebyshev polynomials. Using a multivariate Christoffel-Darboux formula it is shown how to derive an orthogonal version of the transform.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2019.8682222</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2379-190X
ispartof ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, p.5023-5026
issn 2379-190X
language eng
recordid cdi_ieee_primary_8682222
source IEEE Xplore All Conference Series
subjects Algebra
algebraic signal processing
Chebyshev approximation
Christoffel-Darboux formula
discret cosine transform
Discrete cosine transforms
lattice of triangles
Lattices
multivariate Chebyshev polynomials
Signal processing
Surface treatment
title The Discrete Cosine Transform on Triangles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Discrete%20Cosine%20Transform%20on%20Triangles&rft.btitle=ICASSP%202019%20-%202019%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Seifert,%20Bastian&rft.date=2019-05-01&rft.spage=5023&rft.epage=5026&rft.pages=5023-5026&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP.2019.8682222&rft.eisbn=9781479981311&rft.eisbn_list=1479981311&rft_dat=%3Cieee_CHZPO%3E8682222%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i220t-318ad9531ce7ec135e5023ca842da64f66972212afa6cc8e3edbf58b35d9e7e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8682222&rfr_iscdi=true