Loading…
The Discrete Cosine Transform on Triangles
The discrete cosine transform is a valuable tool in analysis of data on undirected rectangular grids, like images. In this paper it is shown how one can define an analogue of the discrete cosine transform on triangles. This is done by combining algebraic signal processing theory with a specific kind...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5026 |
container_issue | |
container_start_page | 5023 |
container_title | |
container_volume | |
creator | Seifert, Bastian Huper, Knut |
description | The discrete cosine transform is a valuable tool in analysis of data on undirected rectangular grids, like images. In this paper it is shown how one can define an analogue of the discrete cosine transform on triangles. This is done by combining algebraic signal processing theory with a specific kind of multivariate Chebyshev polynomials. Using a multivariate Christoffel-Darboux formula it is shown how to derive an orthogonal version of the transform. |
doi_str_mv | 10.1109/ICASSP.2019.8682222 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8682222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8682222</ieee_id><sourcerecordid>8682222</sourcerecordid><originalsourceid>FETCH-LOGICAL-i220t-318ad9531ce7ec135e5023ca842da64f66972212afa6cc8e3edbf58b35d9e7e43</originalsourceid><addsrcrecordid>eNotj01LAzEYhKNQsLb9Bb3sWdg1bz7fHGX9hIJCV_BW0uwbjbS7kvTiv3fBzmWYwzPMMLYG3gBwd_vS3m23b43g4Bo0KCZdsJWzCMo6hyABLtlcSOtqcPzjil2X8s05R6twzm66L6ruUwmZTlS1Y0kDVV32Q4ljPlbjMIXkh88DlSWbRX8otDr7gr0_PnTtc715fZpGbOokBD_VEtD3TksIZCmA1KS5kMGjEr03KhrjrBAgfPQmBCRJ_T5q3Evdu4lQcsHW_72JiHY_OR19_t2dr8k_RitCIQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Discrete Cosine Transform on Triangles</title><source>IEEE Xplore All Conference Series</source><creator>Seifert, Bastian ; Huper, Knut</creator><creatorcontrib>Seifert, Bastian ; Huper, Knut</creatorcontrib><description>The discrete cosine transform is a valuable tool in analysis of data on undirected rectangular grids, like images. In this paper it is shown how one can define an analogue of the discrete cosine transform on triangles. This is done by combining algebraic signal processing theory with a specific kind of multivariate Chebyshev polynomials. Using a multivariate Christoffel-Darboux formula it is shown how to derive an orthogonal version of the transform.</description><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781479981311</identifier><identifier>EISBN: 1479981311</identifier><identifier>DOI: 10.1109/ICASSP.2019.8682222</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algebra ; algebraic signal processing ; Chebyshev approximation ; Christoffel-Darboux formula ; discret cosine transform ; Discrete cosine transforms ; lattice of triangles ; Lattices ; multivariate Chebyshev polynomials ; Signal processing ; Surface treatment</subject><ispartof>ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, p.5023-5026</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8682222$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8682222$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Seifert, Bastian</creatorcontrib><creatorcontrib>Huper, Knut</creatorcontrib><title>The Discrete Cosine Transform on Triangles</title><title>ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>The discrete cosine transform is a valuable tool in analysis of data on undirected rectangular grids, like images. In this paper it is shown how one can define an analogue of the discrete cosine transform on triangles. This is done by combining algebraic signal processing theory with a specific kind of multivariate Chebyshev polynomials. Using a multivariate Christoffel-Darboux formula it is shown how to derive an orthogonal version of the transform.</description><subject>Algebra</subject><subject>algebraic signal processing</subject><subject>Chebyshev approximation</subject><subject>Christoffel-Darboux formula</subject><subject>discret cosine transform</subject><subject>Discrete cosine transforms</subject><subject>lattice of triangles</subject><subject>Lattices</subject><subject>multivariate Chebyshev polynomials</subject><subject>Signal processing</subject><subject>Surface treatment</subject><issn>2379-190X</issn><isbn>9781479981311</isbn><isbn>1479981311</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj01LAzEYhKNQsLb9Bb3sWdg1bz7fHGX9hIJCV_BW0uwbjbS7kvTiv3fBzmWYwzPMMLYG3gBwd_vS3m23b43g4Bo0KCZdsJWzCMo6hyABLtlcSOtqcPzjil2X8s05R6twzm66L6ruUwmZTlS1Y0kDVV32Q4ljPlbjMIXkh88DlSWbRX8otDr7gr0_PnTtc715fZpGbOokBD_VEtD3TksIZCmA1KS5kMGjEr03KhrjrBAgfPQmBCRJ_T5q3Evdu4lQcsHW_72JiHY_OR19_t2dr8k_RitCIQ</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Seifert, Bastian</creator><creator>Huper, Knut</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20190501</creationdate><title>The Discrete Cosine Transform on Triangles</title><author>Seifert, Bastian ; Huper, Knut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i220t-318ad9531ce7ec135e5023ca842da64f66972212afa6cc8e3edbf58b35d9e7e43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>algebraic signal processing</topic><topic>Chebyshev approximation</topic><topic>Christoffel-Darboux formula</topic><topic>discret cosine transform</topic><topic>Discrete cosine transforms</topic><topic>lattice of triangles</topic><topic>Lattices</topic><topic>multivariate Chebyshev polynomials</topic><topic>Signal processing</topic><topic>Surface treatment</topic><toplevel>online_resources</toplevel><creatorcontrib>Seifert, Bastian</creatorcontrib><creatorcontrib>Huper, Knut</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Seifert, Bastian</au><au>Huper, Knut</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Discrete Cosine Transform on Triangles</atitle><btitle>ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2019-05-01</date><risdate>2019</risdate><spage>5023</spage><epage>5026</epage><pages>5023-5026</pages><eissn>2379-190X</eissn><eisbn>9781479981311</eisbn><eisbn>1479981311</eisbn><abstract>The discrete cosine transform is a valuable tool in analysis of data on undirected rectangular grids, like images. In this paper it is shown how one can define an analogue of the discrete cosine transform on triangles. This is done by combining algebraic signal processing theory with a specific kind of multivariate Chebyshev polynomials. Using a multivariate Christoffel-Darboux formula it is shown how to derive an orthogonal version of the transform.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2019.8682222</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2379-190X |
ispartof | ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, p.5023-5026 |
issn | 2379-190X |
language | eng |
recordid | cdi_ieee_primary_8682222 |
source | IEEE Xplore All Conference Series |
subjects | Algebra algebraic signal processing Chebyshev approximation Christoffel-Darboux formula discret cosine transform Discrete cosine transforms lattice of triangles Lattices multivariate Chebyshev polynomials Signal processing Surface treatment |
title | The Discrete Cosine Transform on Triangles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Discrete%20Cosine%20Transform%20on%20Triangles&rft.btitle=ICASSP%202019%20-%202019%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Seifert,%20Bastian&rft.date=2019-05-01&rft.spage=5023&rft.epage=5026&rft.pages=5023-5026&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP.2019.8682222&rft.eisbn=9781479981311&rft.eisbn_list=1479981311&rft_dat=%3Cieee_CHZPO%3E8682222%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i220t-318ad9531ce7ec135e5023ca842da64f66972212afa6cc8e3edbf58b35d9e7e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8682222&rfr_iscdi=true |