Loading…

Hybrid Sparse Array Design for Under-determined Models

Sparse arrays are typically configured considering either the environmental dependent or independent design objectives. In this paper, we investigate hybrid sparse array design satisfying dual design objectives. We consider enhancing the source identifiability and maximizing the Signal-to-Interferen...

Full description

Saved in:
Bibliographic Details
Main Authors: Hamza, Syed A., Amin, Moeness G.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4184
container_issue
container_start_page 4180
container_title
container_volume
creator Hamza, Syed A.
Amin, Moeness G.
description Sparse arrays are typically configured considering either the environmental dependent or independent design objectives. In this paper, we investigate hybrid sparse array design satisfying dual design objectives. We consider enhancing the source identifiability and maximizing the Signal-to-Interference-plus-noise-ratio (SINR) as our design criteria. We pose the problem as designing fully augmentable sparse arrays for receive beamforming achieving maximum SINR (MaxSINR) for desired point sources operating in an interference active environment. The problem is formulated as a re-weighted l 1 -norm squared quadratically constraint quadratic program (QCQP). Simulation results are presented to show the effectiveness of the proposed algorithm for designing fully augmentable arrays in case of under-determined scenarios.
doi_str_mv 10.1109/ICASSP.2019.8682266
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8682266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8682266</ieee_id><sourcerecordid>8682266</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-52c170b2cc133c94c554ad7b987d4f2c1eeae07577fc843d920be10ce41e67d33</originalsourceid><addsrcrecordid>eNotj81qAjEURtNCodb6BG7yApnmJpm5yVLsj4KlhanQnWSSOyVFR0nczNtXqKtvceBwPsbmICsA6Z7Wy0XbflZKgqtsY5Vqmhs2c2jBoHMWNMAtmyiNToCT3_fsoZRfKaVFYyesWY1dTpG3J58L8UXOfuTPVNLPwPtj5tshUhaRzpQPaaDI34-R9uWR3fV-X2h23Snbvr58LVdi8_F2CdqIBFifRa0CoOxUCKB1cCbUtfERO2cxmv4CiTxJrBH7YI2OTsmOQAYyQA1Grads_u9NRLQ75XTwedxdb-o_DUFGUg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hybrid Sparse Array Design for Under-determined Models</title><source>IEEE Xplore All Conference Series</source><creator>Hamza, Syed A. ; Amin, Moeness G.</creator><creatorcontrib>Hamza, Syed A. ; Amin, Moeness G.</creatorcontrib><description>Sparse arrays are typically configured considering either the environmental dependent or independent design objectives. In this paper, we investigate hybrid sparse array design satisfying dual design objectives. We consider enhancing the source identifiability and maximizing the Signal-to-Interference-plus-noise-ratio (SINR) as our design criteria. We pose the problem as designing fully augmentable sparse arrays for receive beamforming achieving maximum SINR (MaxSINR) for desired point sources operating in an interference active environment. The problem is formulated as a re-weighted l 1 -norm squared quadratically constraint quadratic program (QCQP). Simulation results are presented to show the effectiveness of the proposed algorithm for designing fully augmentable arrays in case of under-determined scenarios.</description><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781479981311</identifier><identifier>EISBN: 1479981311</identifier><identifier>DOI: 10.1109/ICASSP.2019.8682266</identifier><language>eng</language><publisher>IEEE</publisher><subject>Array signal processing ; Correlation ; fully augmentable sparse arrays ; Interference ; l 1 -norm ; MaxSINR ; Optimization ; QCQP ; Sensor arrays ; Signal to noise ratio ; SINR ; Sparse matrices</subject><ispartof>ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, p.4180-4184</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8682266$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8682266$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hamza, Syed A.</creatorcontrib><creatorcontrib>Amin, Moeness G.</creatorcontrib><title>Hybrid Sparse Array Design for Under-determined Models</title><title>ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>Sparse arrays are typically configured considering either the environmental dependent or independent design objectives. In this paper, we investigate hybrid sparse array design satisfying dual design objectives. We consider enhancing the source identifiability and maximizing the Signal-to-Interference-plus-noise-ratio (SINR) as our design criteria. We pose the problem as designing fully augmentable sparse arrays for receive beamforming achieving maximum SINR (MaxSINR) for desired point sources operating in an interference active environment. The problem is formulated as a re-weighted l 1 -norm squared quadratically constraint quadratic program (QCQP). Simulation results are presented to show the effectiveness of the proposed algorithm for designing fully augmentable arrays in case of under-determined scenarios.</description><subject>Array signal processing</subject><subject>Correlation</subject><subject>fully augmentable sparse arrays</subject><subject>Interference</subject><subject>l 1 -norm</subject><subject>MaxSINR</subject><subject>Optimization</subject><subject>QCQP</subject><subject>Sensor arrays</subject><subject>Signal to noise ratio</subject><subject>SINR</subject><subject>Sparse matrices</subject><issn>2379-190X</issn><isbn>9781479981311</isbn><isbn>1479981311</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81qAjEURtNCodb6BG7yApnmJpm5yVLsj4KlhanQnWSSOyVFR0nczNtXqKtvceBwPsbmICsA6Z7Wy0XbflZKgqtsY5Vqmhs2c2jBoHMWNMAtmyiNToCT3_fsoZRfKaVFYyesWY1dTpG3J58L8UXOfuTPVNLPwPtj5tshUhaRzpQPaaDI34-R9uWR3fV-X2h23Snbvr58LVdi8_F2CdqIBFifRa0CoOxUCKB1cCbUtfERO2cxmv4CiTxJrBH7YI2OTsmOQAYyQA1Grads_u9NRLQ75XTwedxdb-o_DUFGUg</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Hamza, Syed A.</creator><creator>Amin, Moeness G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201905</creationdate><title>Hybrid Sparse Array Design for Under-determined Models</title><author>Hamza, Syed A. ; Amin, Moeness G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-52c170b2cc133c94c554ad7b987d4f2c1eeae07577fc843d920be10ce41e67d33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Array signal processing</topic><topic>Correlation</topic><topic>fully augmentable sparse arrays</topic><topic>Interference</topic><topic>l 1 -norm</topic><topic>MaxSINR</topic><topic>Optimization</topic><topic>QCQP</topic><topic>Sensor arrays</topic><topic>Signal to noise ratio</topic><topic>SINR</topic><topic>Sparse matrices</topic><toplevel>online_resources</toplevel><creatorcontrib>Hamza, Syed A.</creatorcontrib><creatorcontrib>Amin, Moeness G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hamza, Syed A.</au><au>Amin, Moeness G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hybrid Sparse Array Design for Under-determined Models</atitle><btitle>ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2019-05</date><risdate>2019</risdate><spage>4180</spage><epage>4184</epage><pages>4180-4184</pages><eissn>2379-190X</eissn><eisbn>9781479981311</eisbn><eisbn>1479981311</eisbn><abstract>Sparse arrays are typically configured considering either the environmental dependent or independent design objectives. In this paper, we investigate hybrid sparse array design satisfying dual design objectives. We consider enhancing the source identifiability and maximizing the Signal-to-Interference-plus-noise-ratio (SINR) as our design criteria. We pose the problem as designing fully augmentable sparse arrays for receive beamforming achieving maximum SINR (MaxSINR) for desired point sources operating in an interference active environment. The problem is formulated as a re-weighted l 1 -norm squared quadratically constraint quadratic program (QCQP). Simulation results are presented to show the effectiveness of the proposed algorithm for designing fully augmentable arrays in case of under-determined scenarios.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2019.8682266</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2379-190X
ispartof ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, p.4180-4184
issn 2379-190X
language eng
recordid cdi_ieee_primary_8682266
source IEEE Xplore All Conference Series
subjects Array signal processing
Correlation
fully augmentable sparse arrays
Interference
l 1 -norm
MaxSINR
Optimization
QCQP
Sensor arrays
Signal to noise ratio
SINR
Sparse matrices
title Hybrid Sparse Array Design for Under-determined Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A19%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hybrid%20Sparse%20Array%20Design%20for%20Under-determined%20Models&rft.btitle=ICASSP%202019%20-%202019%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Hamza,%20Syed%20A.&rft.date=2019-05&rft.spage=4180&rft.epage=4184&rft.pages=4180-4184&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP.2019.8682266&rft.eisbn=9781479981311&rft.eisbn_list=1479981311&rft_dat=%3Cieee_CHZPO%3E8682266%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-52c170b2cc133c94c554ad7b987d4f2c1eeae07577fc843d920be10ce41e67d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8682266&rfr_iscdi=true