Loading…
Hybrid Sparse Array Design for Under-determined Models
Sparse arrays are typically configured considering either the environmental dependent or independent design objectives. In this paper, we investigate hybrid sparse array design satisfying dual design objectives. We consider enhancing the source identifiability and maximizing the Signal-to-Interferen...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4184 |
container_issue | |
container_start_page | 4180 |
container_title | |
container_volume | |
creator | Hamza, Syed A. Amin, Moeness G. |
description | Sparse arrays are typically configured considering either the environmental dependent or independent design objectives. In this paper, we investigate hybrid sparse array design satisfying dual design objectives. We consider enhancing the source identifiability and maximizing the Signal-to-Interference-plus-noise-ratio (SINR) as our design criteria. We pose the problem as designing fully augmentable sparse arrays for receive beamforming achieving maximum SINR (MaxSINR) for desired point sources operating in an interference active environment. The problem is formulated as a re-weighted l 1 -norm squared quadratically constraint quadratic program (QCQP). Simulation results are presented to show the effectiveness of the proposed algorithm for designing fully augmentable arrays in case of under-determined scenarios. |
doi_str_mv | 10.1109/ICASSP.2019.8682266 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8682266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8682266</ieee_id><sourcerecordid>8682266</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-52c170b2cc133c94c554ad7b987d4f2c1eeae07577fc843d920be10ce41e67d33</originalsourceid><addsrcrecordid>eNotj81qAjEURtNCodb6BG7yApnmJpm5yVLsj4KlhanQnWSSOyVFR0nczNtXqKtvceBwPsbmICsA6Z7Wy0XbflZKgqtsY5Vqmhs2c2jBoHMWNMAtmyiNToCT3_fsoZRfKaVFYyesWY1dTpG3J58L8UXOfuTPVNLPwPtj5tshUhaRzpQPaaDI34-R9uWR3fV-X2h23Snbvr58LVdi8_F2CdqIBFifRa0CoOxUCKB1cCbUtfERO2cxmv4CiTxJrBH7YI2OTsmOQAYyQA1Grads_u9NRLQ75XTwedxdb-o_DUFGUg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hybrid Sparse Array Design for Under-determined Models</title><source>IEEE Xplore All Conference Series</source><creator>Hamza, Syed A. ; Amin, Moeness G.</creator><creatorcontrib>Hamza, Syed A. ; Amin, Moeness G.</creatorcontrib><description>Sparse arrays are typically configured considering either the environmental dependent or independent design objectives. In this paper, we investigate hybrid sparse array design satisfying dual design objectives. We consider enhancing the source identifiability and maximizing the Signal-to-Interference-plus-noise-ratio (SINR) as our design criteria. We pose the problem as designing fully augmentable sparse arrays for receive beamforming achieving maximum SINR (MaxSINR) for desired point sources operating in an interference active environment. The problem is formulated as a re-weighted l 1 -norm squared quadratically constraint quadratic program (QCQP). Simulation results are presented to show the effectiveness of the proposed algorithm for designing fully augmentable arrays in case of under-determined scenarios.</description><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781479981311</identifier><identifier>EISBN: 1479981311</identifier><identifier>DOI: 10.1109/ICASSP.2019.8682266</identifier><language>eng</language><publisher>IEEE</publisher><subject>Array signal processing ; Correlation ; fully augmentable sparse arrays ; Interference ; l 1 -norm ; MaxSINR ; Optimization ; QCQP ; Sensor arrays ; Signal to noise ratio ; SINR ; Sparse matrices</subject><ispartof>ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, p.4180-4184</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8682266$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8682266$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hamza, Syed A.</creatorcontrib><creatorcontrib>Amin, Moeness G.</creatorcontrib><title>Hybrid Sparse Array Design for Under-determined Models</title><title>ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>Sparse arrays are typically configured considering either the environmental dependent or independent design objectives. In this paper, we investigate hybrid sparse array design satisfying dual design objectives. We consider enhancing the source identifiability and maximizing the Signal-to-Interference-plus-noise-ratio (SINR) as our design criteria. We pose the problem as designing fully augmentable sparse arrays for receive beamforming achieving maximum SINR (MaxSINR) for desired point sources operating in an interference active environment. The problem is formulated as a re-weighted l 1 -norm squared quadratically constraint quadratic program (QCQP). Simulation results are presented to show the effectiveness of the proposed algorithm for designing fully augmentable arrays in case of under-determined scenarios.</description><subject>Array signal processing</subject><subject>Correlation</subject><subject>fully augmentable sparse arrays</subject><subject>Interference</subject><subject>l 1 -norm</subject><subject>MaxSINR</subject><subject>Optimization</subject><subject>QCQP</subject><subject>Sensor arrays</subject><subject>Signal to noise ratio</subject><subject>SINR</subject><subject>Sparse matrices</subject><issn>2379-190X</issn><isbn>9781479981311</isbn><isbn>1479981311</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81qAjEURtNCodb6BG7yApnmJpm5yVLsj4KlhanQnWSSOyVFR0nczNtXqKtvceBwPsbmICsA6Z7Wy0XbflZKgqtsY5Vqmhs2c2jBoHMWNMAtmyiNToCT3_fsoZRfKaVFYyesWY1dTpG3J58L8UXOfuTPVNLPwPtj5tshUhaRzpQPaaDI34-R9uWR3fV-X2h23Snbvr58LVdi8_F2CdqIBFifRa0CoOxUCKB1cCbUtfERO2cxmv4CiTxJrBH7YI2OTsmOQAYyQA1Grads_u9NRLQ75XTwedxdb-o_DUFGUg</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Hamza, Syed A.</creator><creator>Amin, Moeness G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201905</creationdate><title>Hybrid Sparse Array Design for Under-determined Models</title><author>Hamza, Syed A. ; Amin, Moeness G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-52c170b2cc133c94c554ad7b987d4f2c1eeae07577fc843d920be10ce41e67d33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Array signal processing</topic><topic>Correlation</topic><topic>fully augmentable sparse arrays</topic><topic>Interference</topic><topic>l 1 -norm</topic><topic>MaxSINR</topic><topic>Optimization</topic><topic>QCQP</topic><topic>Sensor arrays</topic><topic>Signal to noise ratio</topic><topic>SINR</topic><topic>Sparse matrices</topic><toplevel>online_resources</toplevel><creatorcontrib>Hamza, Syed A.</creatorcontrib><creatorcontrib>Amin, Moeness G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hamza, Syed A.</au><au>Amin, Moeness G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hybrid Sparse Array Design for Under-determined Models</atitle><btitle>ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2019-05</date><risdate>2019</risdate><spage>4180</spage><epage>4184</epage><pages>4180-4184</pages><eissn>2379-190X</eissn><eisbn>9781479981311</eisbn><eisbn>1479981311</eisbn><abstract>Sparse arrays are typically configured considering either the environmental dependent or independent design objectives. In this paper, we investigate hybrid sparse array design satisfying dual design objectives. We consider enhancing the source identifiability and maximizing the Signal-to-Interference-plus-noise-ratio (SINR) as our design criteria. We pose the problem as designing fully augmentable sparse arrays for receive beamforming achieving maximum SINR (MaxSINR) for desired point sources operating in an interference active environment. The problem is formulated as a re-weighted l 1 -norm squared quadratically constraint quadratic program (QCQP). Simulation results are presented to show the effectiveness of the proposed algorithm for designing fully augmentable arrays in case of under-determined scenarios.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2019.8682266</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2379-190X |
ispartof | ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, p.4180-4184 |
issn | 2379-190X |
language | eng |
recordid | cdi_ieee_primary_8682266 |
source | IEEE Xplore All Conference Series |
subjects | Array signal processing Correlation fully augmentable sparse arrays Interference l 1 -norm MaxSINR Optimization QCQP Sensor arrays Signal to noise ratio SINR Sparse matrices |
title | Hybrid Sparse Array Design for Under-determined Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A19%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hybrid%20Sparse%20Array%20Design%20for%20Under-determined%20Models&rft.btitle=ICASSP%202019%20-%202019%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Hamza,%20Syed%20A.&rft.date=2019-05&rft.spage=4180&rft.epage=4184&rft.pages=4180-4184&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP.2019.8682266&rft.eisbn=9781479981311&rft.eisbn_list=1479981311&rft_dat=%3Cieee_CHZPO%3E8682266%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-52c170b2cc133c94c554ad7b987d4f2c1eeae07577fc843d920be10ce41e67d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8682266&rfr_iscdi=true |