Loading…
Iterative Approximation of Analytic Eigenvalues of a Parahermitian Matrix EVD
We present an algorithm that extracts analytic eigenvalues from a parahermitian matrix. Operating in the discrete Fourier transform domain, an inner iteration re-establishes the lost association between bins via a maximum likelihood sequence detection driven by a smoothness criterion. An outer itera...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present an algorithm that extracts analytic eigenvalues from a parahermitian matrix. Operating in the discrete Fourier transform domain, an inner iteration re-establishes the lost association between bins via a maximum likelihood sequence detection driven by a smoothness criterion. An outer iteration continues until a desired accuracy for the approximation of the extracted eigenvalues has been achieved. The approach is compared to existing algorithms. |
---|---|
ISSN: | 2379-190X |
DOI: | 10.1109/ICASSP.2019.8682407 |