Loading…

Learning to Match Transient Sound Events Using Attentional Similarity for Few-shot Sound Recognition

In this paper, we introduce a novel attentional similarity module for the problem of few-shot sound recognition. Given a few examples of an unseen sound event, a classifier must be quickly adapted to recognize the new sound event without much fine-tuning. The proposed attentional similarity module c...

Full description

Saved in:
Bibliographic Details
Main Authors: Chou, Szu-Yu, Cheng, Kai-Hsiang, Jang, Jyh-Shing Roger, Yang, Yi-Hsuan
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c225t-81ba5dac4b74e383665fd18f3b1288456584e7580958055ac5e51a7f9c1652eb3
cites
container_end_page 30
container_issue
container_start_page 26
container_title
container_volume
creator Chou, Szu-Yu
Cheng, Kai-Hsiang
Jang, Jyh-Shing Roger
Yang, Yi-Hsuan
description In this paper, we introduce a novel attentional similarity module for the problem of few-shot sound recognition. Given a few examples of an unseen sound event, a classifier must be quickly adapted to recognize the new sound event without much fine-tuning. The proposed attentional similarity module can be plugged into any metric-based learning method for few-shot learning, allowing the resulting model to especially match related short sound events. Extensive experiments on two datasets show that the proposed module consistently improves the performance of five different metric-based learning methods for few-shot sound recognition. The relative improvement ranges from +4.1% to +7.7% for 5-shot 5-way accuracy for the ESC-50 dataset, and from +2.1% to +6.5% for noiseESC-50. Qualitative results demonstrate that our method contributes in particular to the recognition of transient sound events.
doi_str_mv 10.1109/ICASSP.2019.8682558
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8682558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8682558</ieee_id><sourcerecordid>8682558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-81ba5dac4b74e383665fd18f3b1288456584e7580958055ac5e51a7f9c1652eb3</originalsourceid><addsrcrecordid>eNo1UNFKwzAUjYLgnPuCveQHWnOTprl5HGNTYaLYDXwbaZtukS6VJir7-3U4Hw7nHjjncDmETIGlAEw_PM9nRfGWcgY6xRy5lHhFJlohZEprBAFwTUZcKJ2AZh-35C6ET8YYqgxHpF5Z03vndzR29MXEak_XvfHBWR9p0X37mi5-hjvQTTi7ZjEOynXetLRwB9ea3sUjbbqeLu1vEvbdf-zdVt3Ou7P3ntw0pg12cuEx2SwX6_lTsnp9HN5fJRXnMiYIpZG1qbJSZVagyHPZ1ICNKIEjZjKXmFklkekBUppKWglGNbqCXHJbijGZ_vU6a-32q3cH0x-3l1HECdG1VxA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Learning to Match Transient Sound Events Using Attentional Similarity for Few-shot Sound Recognition</title><source>IEEE Xplore All Conference Series</source><creator>Chou, Szu-Yu ; Cheng, Kai-Hsiang ; Jang, Jyh-Shing Roger ; Yang, Yi-Hsuan</creator><creatorcontrib>Chou, Szu-Yu ; Cheng, Kai-Hsiang ; Jang, Jyh-Shing Roger ; Yang, Yi-Hsuan</creatorcontrib><description>In this paper, we introduce a novel attentional similarity module for the problem of few-shot sound recognition. Given a few examples of an unseen sound event, a classifier must be quickly adapted to recognize the new sound event without much fine-tuning. The proposed attentional similarity module can be plugged into any metric-based learning method for few-shot learning, allowing the resulting model to especially match related short sound events. Extensive experiments on two datasets show that the proposed module consistently improves the performance of five different metric-based learning methods for few-shot sound recognition. The relative improvement ranges from +4.1% to +7.7% for 5-shot 5-way accuracy for the ESC-50 dataset, and from +2.1% to +6.5% for noiseESC-50. Qualitative results demonstrate that our method contributes in particular to the recognition of transient sound events.</description><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781479981311</identifier><identifier>EISBN: 1479981311</identifier><identifier>DOI: 10.1109/ICASSP.2019.8682558</identifier><language>eng</language><publisher>IEEE</publisher><subject>deep learning ; Feature extraction ; Few-shot learning ; Image color analysis ; Learning systems ; Noise measurement ; sound event detection ; Task analysis ; Training ; Transient analysis ; transient sound event</subject><ispartof>ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, p.26-30</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-81ba5dac4b74e383665fd18f3b1288456584e7580958055ac5e51a7f9c1652eb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8682558$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8682558$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chou, Szu-Yu</creatorcontrib><creatorcontrib>Cheng, Kai-Hsiang</creatorcontrib><creatorcontrib>Jang, Jyh-Shing Roger</creatorcontrib><creatorcontrib>Yang, Yi-Hsuan</creatorcontrib><title>Learning to Match Transient Sound Events Using Attentional Similarity for Few-shot Sound Recognition</title><title>ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>In this paper, we introduce a novel attentional similarity module for the problem of few-shot sound recognition. Given a few examples of an unseen sound event, a classifier must be quickly adapted to recognize the new sound event without much fine-tuning. The proposed attentional similarity module can be plugged into any metric-based learning method for few-shot learning, allowing the resulting model to especially match related short sound events. Extensive experiments on two datasets show that the proposed module consistently improves the performance of five different metric-based learning methods for few-shot sound recognition. The relative improvement ranges from +4.1% to +7.7% for 5-shot 5-way accuracy for the ESC-50 dataset, and from +2.1% to +6.5% for noiseESC-50. Qualitative results demonstrate that our method contributes in particular to the recognition of transient sound events.</description><subject>deep learning</subject><subject>Feature extraction</subject><subject>Few-shot learning</subject><subject>Image color analysis</subject><subject>Learning systems</subject><subject>Noise measurement</subject><subject>sound event detection</subject><subject>Task analysis</subject><subject>Training</subject><subject>Transient analysis</subject><subject>transient sound event</subject><issn>2379-190X</issn><isbn>9781479981311</isbn><isbn>1479981311</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UNFKwzAUjYLgnPuCveQHWnOTprl5HGNTYaLYDXwbaZtukS6VJir7-3U4Hw7nHjjncDmETIGlAEw_PM9nRfGWcgY6xRy5lHhFJlohZEprBAFwTUZcKJ2AZh-35C6ET8YYqgxHpF5Z03vndzR29MXEak_XvfHBWR9p0X37mi5-hjvQTTi7ZjEOynXetLRwB9ea3sUjbbqeLu1vEvbdf-zdVt3Ou7P3ntw0pg12cuEx2SwX6_lTsnp9HN5fJRXnMiYIpZG1qbJSZVagyHPZ1ICNKIEjZjKXmFklkekBUppKWglGNbqCXHJbijGZ_vU6a-32q3cH0x-3l1HECdG1VxA</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Chou, Szu-Yu</creator><creator>Cheng, Kai-Hsiang</creator><creator>Jang, Jyh-Shing Roger</creator><creator>Yang, Yi-Hsuan</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201905</creationdate><title>Learning to Match Transient Sound Events Using Attentional Similarity for Few-shot Sound Recognition</title><author>Chou, Szu-Yu ; Cheng, Kai-Hsiang ; Jang, Jyh-Shing Roger ; Yang, Yi-Hsuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-81ba5dac4b74e383665fd18f3b1288456584e7580958055ac5e51a7f9c1652eb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>deep learning</topic><topic>Feature extraction</topic><topic>Few-shot learning</topic><topic>Image color analysis</topic><topic>Learning systems</topic><topic>Noise measurement</topic><topic>sound event detection</topic><topic>Task analysis</topic><topic>Training</topic><topic>Transient analysis</topic><topic>transient sound event</topic><toplevel>online_resources</toplevel><creatorcontrib>Chou, Szu-Yu</creatorcontrib><creatorcontrib>Cheng, Kai-Hsiang</creatorcontrib><creatorcontrib>Jang, Jyh-Shing Roger</creatorcontrib><creatorcontrib>Yang, Yi-Hsuan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chou, Szu-Yu</au><au>Cheng, Kai-Hsiang</au><au>Jang, Jyh-Shing Roger</au><au>Yang, Yi-Hsuan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Learning to Match Transient Sound Events Using Attentional Similarity for Few-shot Sound Recognition</atitle><btitle>ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2019-05</date><risdate>2019</risdate><spage>26</spage><epage>30</epage><pages>26-30</pages><eissn>2379-190X</eissn><eisbn>9781479981311</eisbn><eisbn>1479981311</eisbn><abstract>In this paper, we introduce a novel attentional similarity module for the problem of few-shot sound recognition. Given a few examples of an unseen sound event, a classifier must be quickly adapted to recognize the new sound event without much fine-tuning. The proposed attentional similarity module can be plugged into any metric-based learning method for few-shot learning, allowing the resulting model to especially match related short sound events. Extensive experiments on two datasets show that the proposed module consistently improves the performance of five different metric-based learning methods for few-shot sound recognition. The relative improvement ranges from +4.1% to +7.7% for 5-shot 5-way accuracy for the ESC-50 dataset, and from +2.1% to +6.5% for noiseESC-50. Qualitative results demonstrate that our method contributes in particular to the recognition of transient sound events.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2019.8682558</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2379-190X
ispartof ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, p.26-30
issn 2379-190X
language eng
recordid cdi_ieee_primary_8682558
source IEEE Xplore All Conference Series
subjects deep learning
Feature extraction
Few-shot learning
Image color analysis
Learning systems
Noise measurement
sound event detection
Task analysis
Training
Transient analysis
transient sound event
title Learning to Match Transient Sound Events Using Attentional Similarity for Few-shot Sound Recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A56%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Learning%20to%20Match%20Transient%20Sound%20Events%20Using%20Attentional%20Similarity%20for%20Few-shot%20Sound%20Recognition&rft.btitle=ICASSP%202019%20-%202019%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Chou,%20Szu-Yu&rft.date=2019-05&rft.spage=26&rft.epage=30&rft.pages=26-30&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP.2019.8682558&rft.eisbn=9781479981311&rft.eisbn_list=1479981311&rft_dat=%3Cieee_CHZPO%3E8682558%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c225t-81ba5dac4b74e383665fd18f3b1288456584e7580958055ac5e51a7f9c1652eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8682558&rfr_iscdi=true