Loading…
Learning to Match Transient Sound Events Using Attentional Similarity for Few-shot Sound Recognition
In this paper, we introduce a novel attentional similarity module for the problem of few-shot sound recognition. Given a few examples of an unseen sound event, a classifier must be quickly adapted to recognize the new sound event without much fine-tuning. The proposed attentional similarity module c...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c225t-81ba5dac4b74e383665fd18f3b1288456584e7580958055ac5e51a7f9c1652eb3 |
---|---|
cites | |
container_end_page | 30 |
container_issue | |
container_start_page | 26 |
container_title | |
container_volume | |
creator | Chou, Szu-Yu Cheng, Kai-Hsiang Jang, Jyh-Shing Roger Yang, Yi-Hsuan |
description | In this paper, we introduce a novel attentional similarity module for the problem of few-shot sound recognition. Given a few examples of an unseen sound event, a classifier must be quickly adapted to recognize the new sound event without much fine-tuning. The proposed attentional similarity module can be plugged into any metric-based learning method for few-shot learning, allowing the resulting model to especially match related short sound events. Extensive experiments on two datasets show that the proposed module consistently improves the performance of five different metric-based learning methods for few-shot sound recognition. The relative improvement ranges from +4.1% to +7.7% for 5-shot 5-way accuracy for the ESC-50 dataset, and from +2.1% to +6.5% for noiseESC-50. Qualitative results demonstrate that our method contributes in particular to the recognition of transient sound events. |
doi_str_mv | 10.1109/ICASSP.2019.8682558 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8682558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8682558</ieee_id><sourcerecordid>8682558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-81ba5dac4b74e383665fd18f3b1288456584e7580958055ac5e51a7f9c1652eb3</originalsourceid><addsrcrecordid>eNo1UNFKwzAUjYLgnPuCveQHWnOTprl5HGNTYaLYDXwbaZtukS6VJir7-3U4Hw7nHjjncDmETIGlAEw_PM9nRfGWcgY6xRy5lHhFJlohZEprBAFwTUZcKJ2AZh-35C6ET8YYqgxHpF5Z03vndzR29MXEak_XvfHBWR9p0X37mi5-hjvQTTi7ZjEOynXetLRwB9ea3sUjbbqeLu1vEvbdf-zdVt3Ou7P3ntw0pg12cuEx2SwX6_lTsnp9HN5fJRXnMiYIpZG1qbJSZVagyHPZ1ICNKIEjZjKXmFklkekBUppKWglGNbqCXHJbijGZ_vU6a-32q3cH0x-3l1HECdG1VxA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Learning to Match Transient Sound Events Using Attentional Similarity for Few-shot Sound Recognition</title><source>IEEE Xplore All Conference Series</source><creator>Chou, Szu-Yu ; Cheng, Kai-Hsiang ; Jang, Jyh-Shing Roger ; Yang, Yi-Hsuan</creator><creatorcontrib>Chou, Szu-Yu ; Cheng, Kai-Hsiang ; Jang, Jyh-Shing Roger ; Yang, Yi-Hsuan</creatorcontrib><description>In this paper, we introduce a novel attentional similarity module for the problem of few-shot sound recognition. Given a few examples of an unseen sound event, a classifier must be quickly adapted to recognize the new sound event without much fine-tuning. The proposed attentional similarity module can be plugged into any metric-based learning method for few-shot learning, allowing the resulting model to especially match related short sound events. Extensive experiments on two datasets show that the proposed module consistently improves the performance of five different metric-based learning methods for few-shot sound recognition. The relative improvement ranges from +4.1% to +7.7% for 5-shot 5-way accuracy for the ESC-50 dataset, and from +2.1% to +6.5% for noiseESC-50. Qualitative results demonstrate that our method contributes in particular to the recognition of transient sound events.</description><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781479981311</identifier><identifier>EISBN: 1479981311</identifier><identifier>DOI: 10.1109/ICASSP.2019.8682558</identifier><language>eng</language><publisher>IEEE</publisher><subject>deep learning ; Feature extraction ; Few-shot learning ; Image color analysis ; Learning systems ; Noise measurement ; sound event detection ; Task analysis ; Training ; Transient analysis ; transient sound event</subject><ispartof>ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, p.26-30</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-81ba5dac4b74e383665fd18f3b1288456584e7580958055ac5e51a7f9c1652eb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8682558$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8682558$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chou, Szu-Yu</creatorcontrib><creatorcontrib>Cheng, Kai-Hsiang</creatorcontrib><creatorcontrib>Jang, Jyh-Shing Roger</creatorcontrib><creatorcontrib>Yang, Yi-Hsuan</creatorcontrib><title>Learning to Match Transient Sound Events Using Attentional Similarity for Few-shot Sound Recognition</title><title>ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>In this paper, we introduce a novel attentional similarity module for the problem of few-shot sound recognition. Given a few examples of an unseen sound event, a classifier must be quickly adapted to recognize the new sound event without much fine-tuning. The proposed attentional similarity module can be plugged into any metric-based learning method for few-shot learning, allowing the resulting model to especially match related short sound events. Extensive experiments on two datasets show that the proposed module consistently improves the performance of five different metric-based learning methods for few-shot sound recognition. The relative improvement ranges from +4.1% to +7.7% for 5-shot 5-way accuracy for the ESC-50 dataset, and from +2.1% to +6.5% for noiseESC-50. Qualitative results demonstrate that our method contributes in particular to the recognition of transient sound events.</description><subject>deep learning</subject><subject>Feature extraction</subject><subject>Few-shot learning</subject><subject>Image color analysis</subject><subject>Learning systems</subject><subject>Noise measurement</subject><subject>sound event detection</subject><subject>Task analysis</subject><subject>Training</subject><subject>Transient analysis</subject><subject>transient sound event</subject><issn>2379-190X</issn><isbn>9781479981311</isbn><isbn>1479981311</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UNFKwzAUjYLgnPuCveQHWnOTprl5HGNTYaLYDXwbaZtukS6VJir7-3U4Hw7nHjjncDmETIGlAEw_PM9nRfGWcgY6xRy5lHhFJlohZEprBAFwTUZcKJ2AZh-35C6ET8YYqgxHpF5Z03vndzR29MXEak_XvfHBWR9p0X37mi5-hjvQTTi7ZjEOynXetLRwB9ea3sUjbbqeLu1vEvbdf-zdVt3Ou7P3ntw0pg12cuEx2SwX6_lTsnp9HN5fJRXnMiYIpZG1qbJSZVagyHPZ1ICNKIEjZjKXmFklkekBUppKWglGNbqCXHJbijGZ_vU6a-32q3cH0x-3l1HECdG1VxA</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Chou, Szu-Yu</creator><creator>Cheng, Kai-Hsiang</creator><creator>Jang, Jyh-Shing Roger</creator><creator>Yang, Yi-Hsuan</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201905</creationdate><title>Learning to Match Transient Sound Events Using Attentional Similarity for Few-shot Sound Recognition</title><author>Chou, Szu-Yu ; Cheng, Kai-Hsiang ; Jang, Jyh-Shing Roger ; Yang, Yi-Hsuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-81ba5dac4b74e383665fd18f3b1288456584e7580958055ac5e51a7f9c1652eb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>deep learning</topic><topic>Feature extraction</topic><topic>Few-shot learning</topic><topic>Image color analysis</topic><topic>Learning systems</topic><topic>Noise measurement</topic><topic>sound event detection</topic><topic>Task analysis</topic><topic>Training</topic><topic>Transient analysis</topic><topic>transient sound event</topic><toplevel>online_resources</toplevel><creatorcontrib>Chou, Szu-Yu</creatorcontrib><creatorcontrib>Cheng, Kai-Hsiang</creatorcontrib><creatorcontrib>Jang, Jyh-Shing Roger</creatorcontrib><creatorcontrib>Yang, Yi-Hsuan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chou, Szu-Yu</au><au>Cheng, Kai-Hsiang</au><au>Jang, Jyh-Shing Roger</au><au>Yang, Yi-Hsuan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Learning to Match Transient Sound Events Using Attentional Similarity for Few-shot Sound Recognition</atitle><btitle>ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2019-05</date><risdate>2019</risdate><spage>26</spage><epage>30</epage><pages>26-30</pages><eissn>2379-190X</eissn><eisbn>9781479981311</eisbn><eisbn>1479981311</eisbn><abstract>In this paper, we introduce a novel attentional similarity module for the problem of few-shot sound recognition. Given a few examples of an unseen sound event, a classifier must be quickly adapted to recognize the new sound event without much fine-tuning. The proposed attentional similarity module can be plugged into any metric-based learning method for few-shot learning, allowing the resulting model to especially match related short sound events. Extensive experiments on two datasets show that the proposed module consistently improves the performance of five different metric-based learning methods for few-shot sound recognition. The relative improvement ranges from +4.1% to +7.7% for 5-shot 5-way accuracy for the ESC-50 dataset, and from +2.1% to +6.5% for noiseESC-50. Qualitative results demonstrate that our method contributes in particular to the recognition of transient sound events.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2019.8682558</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2379-190X |
ispartof | ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, p.26-30 |
issn | 2379-190X |
language | eng |
recordid | cdi_ieee_primary_8682558 |
source | IEEE Xplore All Conference Series |
subjects | deep learning Feature extraction Few-shot learning Image color analysis Learning systems Noise measurement sound event detection Task analysis Training Transient analysis transient sound event |
title | Learning to Match Transient Sound Events Using Attentional Similarity for Few-shot Sound Recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A56%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Learning%20to%20Match%20Transient%20Sound%20Events%20Using%20Attentional%20Similarity%20for%20Few-shot%20Sound%20Recognition&rft.btitle=ICASSP%202019%20-%202019%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Chou,%20Szu-Yu&rft.date=2019-05&rft.spage=26&rft.epage=30&rft.pages=26-30&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP.2019.8682558&rft.eisbn=9781479981311&rft.eisbn_list=1479981311&rft_dat=%3Cieee_CHZPO%3E8682558%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c225t-81ba5dac4b74e383665fd18f3b1288456584e7580958055ac5e51a7f9c1652eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8682558&rfr_iscdi=true |