Loading…

Imitation Refinement for X-ray Diffraction Signal Processing

Many real-world tasks involve identifying signals from data satisfying background or prior knowledge. In domains like materials discovery, due to the flaws and biases in raw experimental data, the identification of X-ray diffraction (XRD) signals often requires significant (manual) expert work to fi...

Full description

Saved in:
Bibliographic Details
Main Authors: Bai, Junwen, Lai, Zihang, Yang, Runzhe, Xue, Yexiang, Gregoire, John, Gomes, Carla
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3341
container_issue
container_start_page 3337
container_title
container_volume
creator Bai, Junwen
Lai, Zihang
Yang, Runzhe
Xue, Yexiang
Gregoire, John
Gomes, Carla
description Many real-world tasks involve identifying signals from data satisfying background or prior knowledge. In domains like materials discovery, due to the flaws and biases in raw experimental data, the identification of X-ray diffraction (XRD) signals often requires significant (manual) expert work to find refined signals that are similar to the ideal theoretical ones. Automatically refining the raw XRD signals utilizing simulated theoretical data is thus desirable. We propose imitation refinement, a novel approach to refine imperfect input signals, guided by a pre-trained classifier incorporating prior knowledge from simulated theoretical data, such that the refined signals imitate the ideal ones. The classifier is trained on the ideal simulated data to classify signals and learns an embedding space where each class is represented by a prototype. The refiner learns to refine the imperfect signals with small modifications, such that their embeddings are closer to the corresponding prototypes. We show that the refiner can be trained in both supervised and unsupervised fashions. We further illustrate the effectiveness of the proposed approach both qualitatively and quantitatively in an X-ray diffraction signal refinement task in materials discovery.
doi_str_mv 10.1109/ICASSP.2019.8683723
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8683723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8683723</ieee_id><sourcerecordid>8683723</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b9c33a662e7b62a6ce71b8a5fef13c310a901a851ae1453b1a6d4ae5b2f71a1f3</originalsourceid><addsrcrecordid>eNotj81Kw0AURkehYG37BN3kBRLnzs38gRupf4WCxSh0V27inTLSJDLJpm-v2K6-zeFwPiGWIAsA6e_Wq4eq2hZKgi-ccWgVXomFtw5K670DBLgWU4XW5-Dl7kbcDsO3lNLZ0k3F_bqNI42x77J3DrHjlrsxC33KdnmiU_YYQ0jU_ANVPHR0zLapb3gYYneYi0mg48CLy87E5_PTx-o137y9_GVt8ghWj3ntG0QyRrGtjSLTsIXakQ4cABsESV4COQ3EUGqsgcxXSaxrFSwQBJyJ5dkbmXn_k2JL6bS_nMVfYP5JMA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Imitation Refinement for X-ray Diffraction Signal Processing</title><source>IEEE Xplore All Conference Series</source><creator>Bai, Junwen ; Lai, Zihang ; Yang, Runzhe ; Xue, Yexiang ; Gregoire, John ; Gomes, Carla</creator><creatorcontrib>Bai, Junwen ; Lai, Zihang ; Yang, Runzhe ; Xue, Yexiang ; Gregoire, John ; Gomes, Carla</creatorcontrib><description>Many real-world tasks involve identifying signals from data satisfying background or prior knowledge. In domains like materials discovery, due to the flaws and biases in raw experimental data, the identification of X-ray diffraction (XRD) signals often requires significant (manual) expert work to find refined signals that are similar to the ideal theoretical ones. Automatically refining the raw XRD signals utilizing simulated theoretical data is thus desirable. We propose imitation refinement, a novel approach to refine imperfect input signals, guided by a pre-trained classifier incorporating prior knowledge from simulated theoretical data, such that the refined signals imitate the ideal ones. The classifier is trained on the ideal simulated data to classify signals and learns an embedding space where each class is represented by a prototype. The refiner learns to refine the imperfect signals with small modifications, such that their embeddings are closer to the corresponding prototypes. We show that the refiner can be trained in both supervised and unsupervised fashions. We further illustrate the effectiveness of the proposed approach both qualitatively and quantitatively in an X-ray diffraction signal refinement task in materials discovery.</description><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781479981311</identifier><identifier>EISBN: 1479981311</identifier><identifier>DOI: 10.1109/ICASSP.2019.8683723</identifier><language>eng</language><publisher>IEEE</publisher><subject>classification ; embeddings ; neural nets ; refinement ; X-ray diffraction signals</subject><ispartof>ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, p.3337-3341</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8683723$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8683723$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bai, Junwen</creatorcontrib><creatorcontrib>Lai, Zihang</creatorcontrib><creatorcontrib>Yang, Runzhe</creatorcontrib><creatorcontrib>Xue, Yexiang</creatorcontrib><creatorcontrib>Gregoire, John</creatorcontrib><creatorcontrib>Gomes, Carla</creatorcontrib><title>Imitation Refinement for X-ray Diffraction Signal Processing</title><title>ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>Many real-world tasks involve identifying signals from data satisfying background or prior knowledge. In domains like materials discovery, due to the flaws and biases in raw experimental data, the identification of X-ray diffraction (XRD) signals often requires significant (manual) expert work to find refined signals that are similar to the ideal theoretical ones. Automatically refining the raw XRD signals utilizing simulated theoretical data is thus desirable. We propose imitation refinement, a novel approach to refine imperfect input signals, guided by a pre-trained classifier incorporating prior knowledge from simulated theoretical data, such that the refined signals imitate the ideal ones. The classifier is trained on the ideal simulated data to classify signals and learns an embedding space where each class is represented by a prototype. The refiner learns to refine the imperfect signals with small modifications, such that their embeddings are closer to the corresponding prototypes. We show that the refiner can be trained in both supervised and unsupervised fashions. We further illustrate the effectiveness of the proposed approach both qualitatively and quantitatively in an X-ray diffraction signal refinement task in materials discovery.</description><subject>classification</subject><subject>embeddings</subject><subject>neural nets</subject><subject>refinement</subject><subject>X-ray diffraction signals</subject><issn>2379-190X</issn><isbn>9781479981311</isbn><isbn>1479981311</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81Kw0AURkehYG37BN3kBRLnzs38gRupf4WCxSh0V27inTLSJDLJpm-v2K6-zeFwPiGWIAsA6e_Wq4eq2hZKgi-ccWgVXomFtw5K670DBLgWU4XW5-Dl7kbcDsO3lNLZ0k3F_bqNI42x77J3DrHjlrsxC33KdnmiU_YYQ0jU_ANVPHR0zLapb3gYYneYi0mg48CLy87E5_PTx-o137y9_GVt8ghWj3ntG0QyRrGtjSLTsIXakQ4cABsESV4COQ3EUGqsgcxXSaxrFSwQBJyJ5dkbmXn_k2JL6bS_nMVfYP5JMA</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Bai, Junwen</creator><creator>Lai, Zihang</creator><creator>Yang, Runzhe</creator><creator>Xue, Yexiang</creator><creator>Gregoire, John</creator><creator>Gomes, Carla</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201905</creationdate><title>Imitation Refinement for X-ray Diffraction Signal Processing</title><author>Bai, Junwen ; Lai, Zihang ; Yang, Runzhe ; Xue, Yexiang ; Gregoire, John ; Gomes, Carla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b9c33a662e7b62a6ce71b8a5fef13c310a901a851ae1453b1a6d4ae5b2f71a1f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>classification</topic><topic>embeddings</topic><topic>neural nets</topic><topic>refinement</topic><topic>X-ray diffraction signals</topic><toplevel>online_resources</toplevel><creatorcontrib>Bai, Junwen</creatorcontrib><creatorcontrib>Lai, Zihang</creatorcontrib><creatorcontrib>Yang, Runzhe</creatorcontrib><creatorcontrib>Xue, Yexiang</creatorcontrib><creatorcontrib>Gregoire, John</creatorcontrib><creatorcontrib>Gomes, Carla</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bai, Junwen</au><au>Lai, Zihang</au><au>Yang, Runzhe</au><au>Xue, Yexiang</au><au>Gregoire, John</au><au>Gomes, Carla</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Imitation Refinement for X-ray Diffraction Signal Processing</atitle><btitle>ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2019-05</date><risdate>2019</risdate><spage>3337</spage><epage>3341</epage><pages>3337-3341</pages><eissn>2379-190X</eissn><eisbn>9781479981311</eisbn><eisbn>1479981311</eisbn><abstract>Many real-world tasks involve identifying signals from data satisfying background or prior knowledge. In domains like materials discovery, due to the flaws and biases in raw experimental data, the identification of X-ray diffraction (XRD) signals often requires significant (manual) expert work to find refined signals that are similar to the ideal theoretical ones. Automatically refining the raw XRD signals utilizing simulated theoretical data is thus desirable. We propose imitation refinement, a novel approach to refine imperfect input signals, guided by a pre-trained classifier incorporating prior knowledge from simulated theoretical data, such that the refined signals imitate the ideal ones. The classifier is trained on the ideal simulated data to classify signals and learns an embedding space where each class is represented by a prototype. The refiner learns to refine the imperfect signals with small modifications, such that their embeddings are closer to the corresponding prototypes. We show that the refiner can be trained in both supervised and unsupervised fashions. We further illustrate the effectiveness of the proposed approach both qualitatively and quantitatively in an X-ray diffraction signal refinement task in materials discovery.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2019.8683723</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2379-190X
ispartof ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, p.3337-3341
issn 2379-190X
language eng
recordid cdi_ieee_primary_8683723
source IEEE Xplore All Conference Series
subjects classification
embeddings
neural nets
refinement
X-ray diffraction signals
title Imitation Refinement for X-ray Diffraction Signal Processing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A53%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Imitation%20Refinement%20for%20X-ray%20Diffraction%20Signal%20Processing&rft.btitle=ICASSP%202019%20-%202019%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Bai,%20Junwen&rft.date=2019-05&rft.spage=3337&rft.epage=3341&rft.pages=3337-3341&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP.2019.8683723&rft.eisbn=9781479981311&rft.eisbn_list=1479981311&rft_dat=%3Cieee_CHZPO%3E8683723%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-b9c33a662e7b62a6ce71b8a5fef13c310a901a851ae1453b1a6d4ae5b2f71a1f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8683723&rfr_iscdi=true