Loading…

Robust Active Noise Control Design by Optimal Weighted Least Squares Approach

An optimal strategy is derived for robust performance of feedforward and feedback noise controllers in active noise control systems with a bounded narrowband disturbance. The designed recursive algorithm updates the weighting factor to make sure that controller updates are performed when the current...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2019-10, Vol.66 (10), p.3955-3967
Main Authors: Aslam, Muhammad Saeed, Shi, Peng, Lim, Cheng-Chew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-9bab12afff4251048ce385a99e097a607dab6e9904438ffbc0f92312d9063dd43
cites cdi_FETCH-LOGICAL-c293t-9bab12afff4251048ce385a99e097a607dab6e9904438ffbc0f92312d9063dd43
container_end_page 3967
container_issue 10
container_start_page 3955
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 66
creator Aslam, Muhammad Saeed
Shi, Peng
Lim, Cheng-Chew
description An optimal strategy is derived for robust performance of feedforward and feedback noise controllers in active noise control systems with a bounded narrowband disturbance. The designed recursive algorithm updates the weighting factor to make sure that controller updates are performed when the current measurement data contain new information to improve the estimation quality. This significantly reduces the computational complexity by allowing fewer updates in the steady state and persistent updates otherwise. The presented algorithm can guarantee non-increasing and positive-definite covariance matrices for feedforward and feedback filters, and this results in a bounded and non-increasing estimation error. Moreover, the proposed algorithm achieves fast convergence with improved performance in steady-state noise reduction. In simulations, the comparison of the proposed method with the established methods under benchmark conditions demonstrates the improvement in the overall performance.
doi_str_mv 10.1109/TCSI.2019.2910290
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8698284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8698284</ieee_id><sourcerecordid>2299238566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-9bab12afff4251048ce385a99e097a607dab6e9904438ffbc0f92312d9063dd43</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jw6u5ukO8cSvwrVgq14XDbJbJtSm7qbCP33JrR4mjk877zMw9itgJEQgA_LbDEdSRA4kihAIpyxgUgSHYGG9LzfY4y0kvqSXYWwgR5RYsDePuq8DQ2fFE31S_y9rgLxrN41vt7yRwrVasfzA5_vm-rbbvkXVat1QyWfke1Si5_Wegp8st_72hbra3bh7DbQzWkO2efz0zJ7jWbzl2k2mUWFRNVEmNtcSOuci2UiINYFKZ1YRAIc2xTGpc1TQoQ4Vtq5vACHUglZIqSqLGM1ZPfHu13tT0uhMZu69buu0kiJHauTNO0ocaQKX4fgyZm9777wByPA9NZMb8301szJWpe5O2YqIvrndYpa6lj9ATpyZ-8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299238566</pqid></control><display><type>article</type><title>Robust Active Noise Control Design by Optimal Weighted Least Squares Approach</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Aslam, Muhammad Saeed ; Shi, Peng ; Lim, Cheng-Chew</creator><creatorcontrib>Aslam, Muhammad Saeed ; Shi, Peng ; Lim, Cheng-Chew</creatorcontrib><description>An optimal strategy is derived for robust performance of feedforward and feedback noise controllers in active noise control systems with a bounded narrowband disturbance. The designed recursive algorithm updates the weighting factor to make sure that controller updates are performed when the current measurement data contain new information to improve the estimation quality. This significantly reduces the computational complexity by allowing fewer updates in the steady state and persistent updates otherwise. The presented algorithm can guarantee non-increasing and positive-definite covariance matrices for feedforward and feedback filters, and this results in a bounded and non-increasing estimation error. Moreover, the proposed algorithm achieves fast convergence with improved performance in steady-state noise reduction. In simulations, the comparison of the proposed method with the established methods under benchmark conditions demonstrates the improvement in the overall performance.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2019.2910290</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active noise control ; Adaptive control ; Algorithms ; Computer simulation ; Control theory ; Convergence ; Covariance matrix ; Feedback ; Feedback control ; Feedforward control ; Feedforward systems ; hybrid control ; Mathematical analysis ; Matrix methods ; Microphones ; Narrowband ; Noise control ; Noise reduction ; Robust active noise control ; Robust control ; selective filtering ; Steady state ; weighted least squares algorithm</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2019-10, Vol.66 (10), p.3955-3967</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-9bab12afff4251048ce385a99e097a607dab6e9904438ffbc0f92312d9063dd43</citedby><cites>FETCH-LOGICAL-c293t-9bab12afff4251048ce385a99e097a607dab6e9904438ffbc0f92312d9063dd43</cites><orcidid>0000-0001-8218-586X ; 0000-0001-6219-4910 ; 0000-0002-2463-9760</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8698284$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Aslam, Muhammad Saeed</creatorcontrib><creatorcontrib>Shi, Peng</creatorcontrib><creatorcontrib>Lim, Cheng-Chew</creatorcontrib><title>Robust Active Noise Control Design by Optimal Weighted Least Squares Approach</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>An optimal strategy is derived for robust performance of feedforward and feedback noise controllers in active noise control systems with a bounded narrowband disturbance. The designed recursive algorithm updates the weighting factor to make sure that controller updates are performed when the current measurement data contain new information to improve the estimation quality. This significantly reduces the computational complexity by allowing fewer updates in the steady state and persistent updates otherwise. The presented algorithm can guarantee non-increasing and positive-definite covariance matrices for feedforward and feedback filters, and this results in a bounded and non-increasing estimation error. Moreover, the proposed algorithm achieves fast convergence with improved performance in steady-state noise reduction. In simulations, the comparison of the proposed method with the established methods under benchmark conditions demonstrates the improvement in the overall performance.</description><subject>Active noise control</subject><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Control theory</subject><subject>Convergence</subject><subject>Covariance matrix</subject><subject>Feedback</subject><subject>Feedback control</subject><subject>Feedforward control</subject><subject>Feedforward systems</subject><subject>hybrid control</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Microphones</subject><subject>Narrowband</subject><subject>Noise control</subject><subject>Noise reduction</subject><subject>Robust active noise control</subject><subject>Robust control</subject><subject>selective filtering</subject><subject>Steady state</subject><subject>weighted least squares algorithm</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jw6u5ukO8cSvwrVgq14XDbJbJtSm7qbCP33JrR4mjk877zMw9itgJEQgA_LbDEdSRA4kihAIpyxgUgSHYGG9LzfY4y0kvqSXYWwgR5RYsDePuq8DQ2fFE31S_y9rgLxrN41vt7yRwrVasfzA5_vm-rbbvkXVat1QyWfke1Si5_Wegp8st_72hbra3bh7DbQzWkO2efz0zJ7jWbzl2k2mUWFRNVEmNtcSOuci2UiINYFKZ1YRAIc2xTGpc1TQoQ4Vtq5vACHUglZIqSqLGM1ZPfHu13tT0uhMZu69buu0kiJHauTNO0ocaQKX4fgyZm9777wByPA9NZMb8301szJWpe5O2YqIvrndYpa6lj9ATpyZ-8</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Aslam, Muhammad Saeed</creator><creator>Shi, Peng</creator><creator>Lim, Cheng-Chew</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8218-586X</orcidid><orcidid>https://orcid.org/0000-0001-6219-4910</orcidid><orcidid>https://orcid.org/0000-0002-2463-9760</orcidid></search><sort><creationdate>20191001</creationdate><title>Robust Active Noise Control Design by Optimal Weighted Least Squares Approach</title><author>Aslam, Muhammad Saeed ; Shi, Peng ; Lim, Cheng-Chew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-9bab12afff4251048ce385a99e097a607dab6e9904438ffbc0f92312d9063dd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Active noise control</topic><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Control theory</topic><topic>Convergence</topic><topic>Covariance matrix</topic><topic>Feedback</topic><topic>Feedback control</topic><topic>Feedforward control</topic><topic>Feedforward systems</topic><topic>hybrid control</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Microphones</topic><topic>Narrowband</topic><topic>Noise control</topic><topic>Noise reduction</topic><topic>Robust active noise control</topic><topic>Robust control</topic><topic>selective filtering</topic><topic>Steady state</topic><topic>weighted least squares algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aslam, Muhammad Saeed</creatorcontrib><creatorcontrib>Shi, Peng</creatorcontrib><creatorcontrib>Lim, Cheng-Chew</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aslam, Muhammad Saeed</au><au>Shi, Peng</au><au>Lim, Cheng-Chew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Active Noise Control Design by Optimal Weighted Least Squares Approach</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>66</volume><issue>10</issue><spage>3955</spage><epage>3967</epage><pages>3955-3967</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>An optimal strategy is derived for robust performance of feedforward and feedback noise controllers in active noise control systems with a bounded narrowband disturbance. The designed recursive algorithm updates the weighting factor to make sure that controller updates are performed when the current measurement data contain new information to improve the estimation quality. This significantly reduces the computational complexity by allowing fewer updates in the steady state and persistent updates otherwise. The presented algorithm can guarantee non-increasing and positive-definite covariance matrices for feedforward and feedback filters, and this results in a bounded and non-increasing estimation error. Moreover, the proposed algorithm achieves fast convergence with improved performance in steady-state noise reduction. In simulations, the comparison of the proposed method with the established methods under benchmark conditions demonstrates the improvement in the overall performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2019.2910290</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8218-586X</orcidid><orcidid>https://orcid.org/0000-0001-6219-4910</orcidid><orcidid>https://orcid.org/0000-0002-2463-9760</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2019-10, Vol.66 (10), p.3955-3967
issn 1549-8328
1558-0806
language eng
recordid cdi_ieee_primary_8698284
source IEEE Electronic Library (IEL) Journals
subjects Active noise control
Adaptive control
Algorithms
Computer simulation
Control theory
Convergence
Covariance matrix
Feedback
Feedback control
Feedforward control
Feedforward systems
hybrid control
Mathematical analysis
Matrix methods
Microphones
Narrowband
Noise control
Noise reduction
Robust active noise control
Robust control
selective filtering
Steady state
weighted least squares algorithm
title Robust Active Noise Control Design by Optimal Weighted Least Squares Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A39%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Active%20Noise%20Control%20Design%20by%20Optimal%20Weighted%20Least%20Squares%20Approach&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Aslam,%20Muhammad%20Saeed&rft.date=2019-10-01&rft.volume=66&rft.issue=10&rft.spage=3955&rft.epage=3967&rft.pages=3955-3967&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2019.2910290&rft_dat=%3Cproquest_ieee_%3E2299238566%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-9bab12afff4251048ce385a99e097a607dab6e9904438ffbc0f92312d9063dd43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2299238566&rft_id=info:pmid/&rft_ieee_id=8698284&rfr_iscdi=true