Loading…

Automated Grasp Planning and Path Planning for a Robot Hand-Arm System

Objects in daily life are not ideal geometric shapes, but most are complex and irregular in shape. Because the number of degrees of freedom (DOFs) of a multi-fingered robot hand is more than the simple gripper, it is important to find the grasping points. This paper primarily focuses on determining...

Full description

Saved in:
Bibliographic Details
Main Authors: Liu, Yi-Ren, Huang, Ming-Bao, Huang, Han-Pang
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 97
container_issue
container_start_page 92
container_title
container_volume
creator Liu, Yi-Ren
Huang, Ming-Bao
Huang, Han-Pang
description Objects in daily life are not ideal geometric shapes, but most are complex and irregular in shape. Because the number of degrees of freedom (DOFs) of a multi-fingered robot hand is more than the simple gripper, it is important to find the grasping points. This paper primarily focuses on determining the grasping points on complex geometric shapes with a multi-fingered robot hand. Each grasping can be described by Grasp Wrench Space (GWS). The quality measure can be determined by analyzing the GWS. The bounding box of the object is a constraint on the workspace of the robot hand-arm system. According to the constraints, the Rapidly-exploring Random Trees (RRT) connect algorithm is used to search for a collision-free path in the joint space of the robot arm. The contact points, i.e. grasping points, on the object can be identified through the bounding box algorithm. Then the obstacle-free path can be automatically generated. Simulations and experiments justify the proposed algorithm with satisfactory results.
doi_str_mv 10.1109/SII.2019.8700433
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8700433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8700433</ieee_id><sourcerecordid>8700433</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9fef4a564583dd829cb8e1e362fd927a4431eaed40cbd03a104b87dd7eea4d5b3</originalsourceid><addsrcrecordid>eNpFj1FLwzAURqMgOOfeBV_yB1pzc5MmeRzDbYWBw-nzuF1utbK2o40P-_cKDnz64Bw48AnxACoHUOFpV5a5VhBy75QyiFfiDiz6Aguw_lpMtHEm06jtrZiN45dSCgooMOiJWM6_U99S4ihXA40nuT1S1zXdh6Quyi2lz39S94Mk-dpXfZLrX53Nh1buzmPi9l7c1HQceXbZqXhfPr8t1tnmZVUu5pusAWdTFmquDdnCWI8xeh0OlWdgLHQdg3ZkDAITR6MOVVRIoEzlXYyOmUy0FU7F41-3Yeb9aWhaGs77y238AQkqSxk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automated Grasp Planning and Path Planning for a Robot Hand-Arm System</title><source>IEEE Xplore All Conference Series</source><creator>Liu, Yi-Ren ; Huang, Ming-Bao ; Huang, Han-Pang</creator><creatorcontrib>Liu, Yi-Ren ; Huang, Ming-Bao ; Huang, Han-Pang</creatorcontrib><description>Objects in daily life are not ideal geometric shapes, but most are complex and irregular in shape. Because the number of degrees of freedom (DOFs) of a multi-fingered robot hand is more than the simple gripper, it is important to find the grasping points. This paper primarily focuses on determining the grasping points on complex geometric shapes with a multi-fingered robot hand. Each grasping can be described by Grasp Wrench Space (GWS). The quality measure can be determined by analyzing the GWS. The bounding box of the object is a constraint on the workspace of the robot hand-arm system. According to the constraints, the Rapidly-exploring Random Trees (RRT) connect algorithm is used to search for a collision-free path in the joint space of the robot arm. The contact points, i.e. grasping points, on the object can be identified through the bounding box algorithm. Then the obstacle-free path can be automatically generated. Simulations and experiments justify the proposed algorithm with satisfactory results.</description><identifier>EISSN: 2474-2325</identifier><identifier>EISBN: 1538636158</identifier><identifier>EISBN: 9781538636152</identifier><identifier>DOI: 10.1109/SII.2019.8700433</identifier><language>eng</language><publisher>IEEE</publisher><subject>Force ; Friction ; Grasping ; Grippers ; Manipulators ; Robot kinematics</subject><ispartof>2019 IEEE/SICE International Symposium on System Integration (SII), 2019, p.92-97</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8700433$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8700433$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Yi-Ren</creatorcontrib><creatorcontrib>Huang, Ming-Bao</creatorcontrib><creatorcontrib>Huang, Han-Pang</creatorcontrib><title>Automated Grasp Planning and Path Planning for a Robot Hand-Arm System</title><title>2019 IEEE/SICE International Symposium on System Integration (SII)</title><addtitle>SII</addtitle><description>Objects in daily life are not ideal geometric shapes, but most are complex and irregular in shape. Because the number of degrees of freedom (DOFs) of a multi-fingered robot hand is more than the simple gripper, it is important to find the grasping points. This paper primarily focuses on determining the grasping points on complex geometric shapes with a multi-fingered robot hand. Each grasping can be described by Grasp Wrench Space (GWS). The quality measure can be determined by analyzing the GWS. The bounding box of the object is a constraint on the workspace of the robot hand-arm system. According to the constraints, the Rapidly-exploring Random Trees (RRT) connect algorithm is used to search for a collision-free path in the joint space of the robot arm. The contact points, i.e. grasping points, on the object can be identified through the bounding box algorithm. Then the obstacle-free path can be automatically generated. Simulations and experiments justify the proposed algorithm with satisfactory results.</description><subject>Force</subject><subject>Friction</subject><subject>Grasping</subject><subject>Grippers</subject><subject>Manipulators</subject><subject>Robot kinematics</subject><issn>2474-2325</issn><isbn>1538636158</isbn><isbn>9781538636152</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFj1FLwzAURqMgOOfeBV_yB1pzc5MmeRzDbYWBw-nzuF1utbK2o40P-_cKDnz64Bw48AnxACoHUOFpV5a5VhBy75QyiFfiDiz6Aguw_lpMtHEm06jtrZiN45dSCgooMOiJWM6_U99S4ihXA40nuT1S1zXdh6Quyi2lz39S94Mk-dpXfZLrX53Nh1buzmPi9l7c1HQceXbZqXhfPr8t1tnmZVUu5pusAWdTFmquDdnCWI8xeh0OlWdgLHQdg3ZkDAITR6MOVVRIoEzlXYyOmUy0FU7F41-3Yeb9aWhaGs77y238AQkqSxk</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Liu, Yi-Ren</creator><creator>Huang, Ming-Bao</creator><creator>Huang, Han-Pang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201901</creationdate><title>Automated Grasp Planning and Path Planning for a Robot Hand-Arm System</title><author>Liu, Yi-Ren ; Huang, Ming-Bao ; Huang, Han-Pang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9fef4a564583dd829cb8e1e362fd927a4431eaed40cbd03a104b87dd7eea4d5b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Force</topic><topic>Friction</topic><topic>Grasping</topic><topic>Grippers</topic><topic>Manipulators</topic><topic>Robot kinematics</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yi-Ren</creatorcontrib><creatorcontrib>Huang, Ming-Bao</creatorcontrib><creatorcontrib>Huang, Han-Pang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Yi-Ren</au><au>Huang, Ming-Bao</au><au>Huang, Han-Pang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automated Grasp Planning and Path Planning for a Robot Hand-Arm System</atitle><btitle>2019 IEEE/SICE International Symposium on System Integration (SII)</btitle><stitle>SII</stitle><date>2019-01</date><risdate>2019</risdate><spage>92</spage><epage>97</epage><pages>92-97</pages><eissn>2474-2325</eissn><eisbn>1538636158</eisbn><eisbn>9781538636152</eisbn><abstract>Objects in daily life are not ideal geometric shapes, but most are complex and irregular in shape. Because the number of degrees of freedom (DOFs) of a multi-fingered robot hand is more than the simple gripper, it is important to find the grasping points. This paper primarily focuses on determining the grasping points on complex geometric shapes with a multi-fingered robot hand. Each grasping can be described by Grasp Wrench Space (GWS). The quality measure can be determined by analyzing the GWS. The bounding box of the object is a constraint on the workspace of the robot hand-arm system. According to the constraints, the Rapidly-exploring Random Trees (RRT) connect algorithm is used to search for a collision-free path in the joint space of the robot arm. The contact points, i.e. grasping points, on the object can be identified through the bounding box algorithm. Then the obstacle-free path can be automatically generated. Simulations and experiments justify the proposed algorithm with satisfactory results.</abstract><pub>IEEE</pub><doi>10.1109/SII.2019.8700433</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2474-2325
ispartof 2019 IEEE/SICE International Symposium on System Integration (SII), 2019, p.92-97
issn 2474-2325
language eng
recordid cdi_ieee_primary_8700433
source IEEE Xplore All Conference Series
subjects Force
Friction
Grasping
Grippers
Manipulators
Robot kinematics
title Automated Grasp Planning and Path Planning for a Robot Hand-Arm System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A19%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automated%20Grasp%20Planning%20and%20Path%20Planning%20for%20a%20Robot%20Hand-Arm%20System&rft.btitle=2019%20IEEE/SICE%20International%20Symposium%20on%20System%20Integration%20(SII)&rft.au=Liu,%20Yi-Ren&rft.date=2019-01&rft.spage=92&rft.epage=97&rft.pages=92-97&rft.eissn=2474-2325&rft_id=info:doi/10.1109/SII.2019.8700433&rft.eisbn=1538636158&rft.eisbn_list=9781538636152&rft_dat=%3Cieee_CHZPO%3E8700433%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-9fef4a564583dd829cb8e1e362fd927a4431eaed40cbd03a104b87dd7eea4d5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8700433&rfr_iscdi=true