Loading…
Automated Grasp Planning and Path Planning for a Robot Hand-Arm System
Objects in daily life are not ideal geometric shapes, but most are complex and irregular in shape. Because the number of degrees of freedom (DOFs) of a multi-fingered robot hand is more than the simple gripper, it is important to find the grasping points. This paper primarily focuses on determining...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 97 |
container_issue | |
container_start_page | 92 |
container_title | |
container_volume | |
creator | Liu, Yi-Ren Huang, Ming-Bao Huang, Han-Pang |
description | Objects in daily life are not ideal geometric shapes, but most are complex and irregular in shape. Because the number of degrees of freedom (DOFs) of a multi-fingered robot hand is more than the simple gripper, it is important to find the grasping points. This paper primarily focuses on determining the grasping points on complex geometric shapes with a multi-fingered robot hand. Each grasping can be described by Grasp Wrench Space (GWS). The quality measure can be determined by analyzing the GWS. The bounding box of the object is a constraint on the workspace of the robot hand-arm system. According to the constraints, the Rapidly-exploring Random Trees (RRT) connect algorithm is used to search for a collision-free path in the joint space of the robot arm. The contact points, i.e. grasping points, on the object can be identified through the bounding box algorithm. Then the obstacle-free path can be automatically generated. Simulations and experiments justify the proposed algorithm with satisfactory results. |
doi_str_mv | 10.1109/SII.2019.8700433 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8700433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8700433</ieee_id><sourcerecordid>8700433</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9fef4a564583dd829cb8e1e362fd927a4431eaed40cbd03a104b87dd7eea4d5b3</originalsourceid><addsrcrecordid>eNpFj1FLwzAURqMgOOfeBV_yB1pzc5MmeRzDbYWBw-nzuF1utbK2o40P-_cKDnz64Bw48AnxACoHUOFpV5a5VhBy75QyiFfiDiz6Aguw_lpMtHEm06jtrZiN45dSCgooMOiJWM6_U99S4ihXA40nuT1S1zXdh6Quyi2lz39S94Mk-dpXfZLrX53Nh1buzmPi9l7c1HQceXbZqXhfPr8t1tnmZVUu5pusAWdTFmquDdnCWI8xeh0OlWdgLHQdg3ZkDAITR6MOVVRIoEzlXYyOmUy0FU7F41-3Yeb9aWhaGs77y238AQkqSxk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automated Grasp Planning and Path Planning for a Robot Hand-Arm System</title><source>IEEE Xplore All Conference Series</source><creator>Liu, Yi-Ren ; Huang, Ming-Bao ; Huang, Han-Pang</creator><creatorcontrib>Liu, Yi-Ren ; Huang, Ming-Bao ; Huang, Han-Pang</creatorcontrib><description>Objects in daily life are not ideal geometric shapes, but most are complex and irregular in shape. Because the number of degrees of freedom (DOFs) of a multi-fingered robot hand is more than the simple gripper, it is important to find the grasping points. This paper primarily focuses on determining the grasping points on complex geometric shapes with a multi-fingered robot hand. Each grasping can be described by Grasp Wrench Space (GWS). The quality measure can be determined by analyzing the GWS. The bounding box of the object is a constraint on the workspace of the robot hand-arm system. According to the constraints, the Rapidly-exploring Random Trees (RRT) connect algorithm is used to search for a collision-free path in the joint space of the robot arm. The contact points, i.e. grasping points, on the object can be identified through the bounding box algorithm. Then the obstacle-free path can be automatically generated. Simulations and experiments justify the proposed algorithm with satisfactory results.</description><identifier>EISSN: 2474-2325</identifier><identifier>EISBN: 1538636158</identifier><identifier>EISBN: 9781538636152</identifier><identifier>DOI: 10.1109/SII.2019.8700433</identifier><language>eng</language><publisher>IEEE</publisher><subject>Force ; Friction ; Grasping ; Grippers ; Manipulators ; Robot kinematics</subject><ispartof>2019 IEEE/SICE International Symposium on System Integration (SII), 2019, p.92-97</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8700433$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8700433$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Yi-Ren</creatorcontrib><creatorcontrib>Huang, Ming-Bao</creatorcontrib><creatorcontrib>Huang, Han-Pang</creatorcontrib><title>Automated Grasp Planning and Path Planning for a Robot Hand-Arm System</title><title>2019 IEEE/SICE International Symposium on System Integration (SII)</title><addtitle>SII</addtitle><description>Objects in daily life are not ideal geometric shapes, but most are complex and irregular in shape. Because the number of degrees of freedom (DOFs) of a multi-fingered robot hand is more than the simple gripper, it is important to find the grasping points. This paper primarily focuses on determining the grasping points on complex geometric shapes with a multi-fingered robot hand. Each grasping can be described by Grasp Wrench Space (GWS). The quality measure can be determined by analyzing the GWS. The bounding box of the object is a constraint on the workspace of the robot hand-arm system. According to the constraints, the Rapidly-exploring Random Trees (RRT) connect algorithm is used to search for a collision-free path in the joint space of the robot arm. The contact points, i.e. grasping points, on the object can be identified through the bounding box algorithm. Then the obstacle-free path can be automatically generated. Simulations and experiments justify the proposed algorithm with satisfactory results.</description><subject>Force</subject><subject>Friction</subject><subject>Grasping</subject><subject>Grippers</subject><subject>Manipulators</subject><subject>Robot kinematics</subject><issn>2474-2325</issn><isbn>1538636158</isbn><isbn>9781538636152</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFj1FLwzAURqMgOOfeBV_yB1pzc5MmeRzDbYWBw-nzuF1utbK2o40P-_cKDnz64Bw48AnxACoHUOFpV5a5VhBy75QyiFfiDiz6Aguw_lpMtHEm06jtrZiN45dSCgooMOiJWM6_U99S4ihXA40nuT1S1zXdh6Quyi2lz39S94Mk-dpXfZLrX53Nh1buzmPi9l7c1HQceXbZqXhfPr8t1tnmZVUu5pusAWdTFmquDdnCWI8xeh0OlWdgLHQdg3ZkDAITR6MOVVRIoEzlXYyOmUy0FU7F41-3Yeb9aWhaGs77y238AQkqSxk</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Liu, Yi-Ren</creator><creator>Huang, Ming-Bao</creator><creator>Huang, Han-Pang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201901</creationdate><title>Automated Grasp Planning and Path Planning for a Robot Hand-Arm System</title><author>Liu, Yi-Ren ; Huang, Ming-Bao ; Huang, Han-Pang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9fef4a564583dd829cb8e1e362fd927a4431eaed40cbd03a104b87dd7eea4d5b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Force</topic><topic>Friction</topic><topic>Grasping</topic><topic>Grippers</topic><topic>Manipulators</topic><topic>Robot kinematics</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yi-Ren</creatorcontrib><creatorcontrib>Huang, Ming-Bao</creatorcontrib><creatorcontrib>Huang, Han-Pang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Yi-Ren</au><au>Huang, Ming-Bao</au><au>Huang, Han-Pang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automated Grasp Planning and Path Planning for a Robot Hand-Arm System</atitle><btitle>2019 IEEE/SICE International Symposium on System Integration (SII)</btitle><stitle>SII</stitle><date>2019-01</date><risdate>2019</risdate><spage>92</spage><epage>97</epage><pages>92-97</pages><eissn>2474-2325</eissn><eisbn>1538636158</eisbn><eisbn>9781538636152</eisbn><abstract>Objects in daily life are not ideal geometric shapes, but most are complex and irregular in shape. Because the number of degrees of freedom (DOFs) of a multi-fingered robot hand is more than the simple gripper, it is important to find the grasping points. This paper primarily focuses on determining the grasping points on complex geometric shapes with a multi-fingered robot hand. Each grasping can be described by Grasp Wrench Space (GWS). The quality measure can be determined by analyzing the GWS. The bounding box of the object is a constraint on the workspace of the robot hand-arm system. According to the constraints, the Rapidly-exploring Random Trees (RRT) connect algorithm is used to search for a collision-free path in the joint space of the robot arm. The contact points, i.e. grasping points, on the object can be identified through the bounding box algorithm. Then the obstacle-free path can be automatically generated. Simulations and experiments justify the proposed algorithm with satisfactory results.</abstract><pub>IEEE</pub><doi>10.1109/SII.2019.8700433</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2474-2325 |
ispartof | 2019 IEEE/SICE International Symposium on System Integration (SII), 2019, p.92-97 |
issn | 2474-2325 |
language | eng |
recordid | cdi_ieee_primary_8700433 |
source | IEEE Xplore All Conference Series |
subjects | Force Friction Grasping Grippers Manipulators Robot kinematics |
title | Automated Grasp Planning and Path Planning for a Robot Hand-Arm System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A19%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automated%20Grasp%20Planning%20and%20Path%20Planning%20for%20a%20Robot%20Hand-Arm%20System&rft.btitle=2019%20IEEE/SICE%20International%20Symposium%20on%20System%20Integration%20(SII)&rft.au=Liu,%20Yi-Ren&rft.date=2019-01&rft.spage=92&rft.epage=97&rft.pages=92-97&rft.eissn=2474-2325&rft_id=info:doi/10.1109/SII.2019.8700433&rft.eisbn=1538636158&rft.eisbn_list=9781538636152&rft_dat=%3Cieee_CHZPO%3E8700433%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-9fef4a564583dd829cb8e1e362fd927a4431eaed40cbd03a104b87dd7eea4d5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8700433&rfr_iscdi=true |