Loading…
Highly-Integrated Low-Power 60 GHz Multichannel Transceiver for Radar Applications in 28 nm CMOS
We present a highly-integrated low-power 60 GHz multi-channel transceiver realized in a 28 nm bulk CMOS technology. The circuit integrates three receive (RX) and two transmit (TX) channels. A receive channel includes an LNA, a passive mixer and a transimpedance amplifier (TIA), while a transmit chan...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a highly-integrated low-power 60 GHz multi-channel transceiver realized in a 28 nm bulk CMOS technology. The circuit integrates three receive (RX) and two transmit (TX) channels. A receive channel includes an LNA, a passive mixer and a transimpedance amplifier (TIA), while a transmit channel contains a three-stage transformer-coupled differential power amplifier (PA). Additionally, the transceiver integrates a local oscillator (LO) signal generation network comprising a voltage-controlled oscillator (VCO), LO buffers, power splitters, frequency divider and a passive distribution network. The VCO is realized as a push-push cross-coupled topology and is continuously tunable in the frequency range 57-to-72 GHz, while achieving a measured phase noise of -84 dBc/Hz at 1 MHz offset at 60 GHz. The entire transceiver dissipates 342 mW using a single 0.9 V supply. A single RX channel draws 33 mA, while a single TX consumes 43 mA. The circuit including pads occupies a chip area of only 1.9 mm Ă— 2.5 mm, which is limited only by the separation necessary for isolation between the channels. The transceiver provides a competitive performance and is suitable for 60 GHz continuous-wave radar applications. |
---|---|
ISSN: | 2576-7216 |
DOI: | 10.1109/MWSYM.2019.8700977 |