Loading…
Live Demonstration: Low-Power Static Neural Network Circuits for Long-Term Change Detection
Low power neural network hardware and its new applications have been explored to exploit its inherent advantage of artificial intelligence in comparison with humans. One such application, long-term change detection, is proposed and presented in this live demonstration. Owing to the low power operati...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Marukame, Takao Kitamura, Toshimitsu Sugino, Junichi Ishikawa, Kazuo Takahashi, Koji Tamura, Yutaka Nishi, Yoshifumi |
description | Low power neural network hardware and its new applications have been explored to exploit its inherent advantage of artificial intelligence in comparison with humans. One such application, long-term change detection, is proposed and presented in this live demonstration. Owing to the low power operation in static analog/digital-mixed neural network circuits, our system using them can detect a change of human-friendly information, e.g., handwritten digits, whereas humans have difficulty noticing a gradual change over the long-term. |
doi_str_mv | 10.1109/ISCAS.2019.8702246 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8702246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8702246</ieee_id><sourcerecordid>8702246</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-42338abccd67559506cbb07585bc23807df490cb16d840c3d2a96e55ccc116d43</originalsourceid><addsrcrecordid>eNotkF1LwzAYRgMqOOf-gN7kD7S-SZov70b9GhQVOq-8GGmazujaSppZ_Pd2uKsDh4dz8SB0RSAlBPTNqsyXZUqB6FRJoDQTJ2ihpSKSKgJMS3GKZpRwlRBO-Tm6GIZPAAog6Ay9F_7H4TvX9t0Qg4m-725x0Y_Jaz-6gMs4KYuf3T6Y3YQ49uEL5z7YvY8DbvowjbttsnahxfmH6baHWHT2ELpEZ43ZDW5x5By9Pdyv86ekeHlc5csi8UTymGSUMWUqa2shOdcchK0qkFzxylKmQNZNpsFWRNQqA8tqarRwnFtryeQyNkfX_13vnNt8B9-a8Ls5fsH-AG9lUvk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Live Demonstration: Low-Power Static Neural Network Circuits for Long-Term Change Detection</title><source>IEEE Xplore All Conference Series</source><creator>Marukame, Takao ; Kitamura, Toshimitsu ; Sugino, Junichi ; Ishikawa, Kazuo ; Takahashi, Koji ; Tamura, Yutaka ; Nishi, Yoshifumi</creator><creatorcontrib>Marukame, Takao ; Kitamura, Toshimitsu ; Sugino, Junichi ; Ishikawa, Kazuo ; Takahashi, Koji ; Tamura, Yutaka ; Nishi, Yoshifumi</creatorcontrib><description>Low power neural network hardware and its new applications have been explored to exploit its inherent advantage of artificial intelligence in comparison with humans. One such application, long-term change detection, is proposed and presented in this live demonstration. Owing to the low power operation in static analog/digital-mixed neural network circuits, our system using them can detect a change of human-friendly information, e.g., handwritten digits, whereas humans have difficulty noticing a gradual change over the long-term.</description><identifier>ISSN: 2158-1525</identifier><identifier>ISBN: 9781728103976</identifier><identifier>ISBN: 1728103975</identifier><identifier>DOI: 10.1109/ISCAS.2019.8702246</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Biological neural networks ; Deep learning ; Field programmable gate arrays ; Monitoring ; Neurons</subject><ispartof>2019 IEEE International Symposium on Circuits and Systems (ISCAS), 2019, p.1-1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8702246$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27904,54533,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8702246$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Marukame, Takao</creatorcontrib><creatorcontrib>Kitamura, Toshimitsu</creatorcontrib><creatorcontrib>Sugino, Junichi</creatorcontrib><creatorcontrib>Ishikawa, Kazuo</creatorcontrib><creatorcontrib>Takahashi, Koji</creatorcontrib><creatorcontrib>Tamura, Yutaka</creatorcontrib><creatorcontrib>Nishi, Yoshifumi</creatorcontrib><title>Live Demonstration: Low-Power Static Neural Network Circuits for Long-Term Change Detection</title><title>2019 IEEE International Symposium on Circuits and Systems (ISCAS)</title><addtitle>ISCAS</addtitle><description>Low power neural network hardware and its new applications have been explored to exploit its inherent advantage of artificial intelligence in comparison with humans. One such application, long-term change detection, is proposed and presented in this live demonstration. Owing to the low power operation in static analog/digital-mixed neural network circuits, our system using them can detect a change of human-friendly information, e.g., handwritten digits, whereas humans have difficulty noticing a gradual change over the long-term.</description><subject>Artificial neural networks</subject><subject>Biological neural networks</subject><subject>Deep learning</subject><subject>Field programmable gate arrays</subject><subject>Monitoring</subject><subject>Neurons</subject><issn>2158-1525</issn><isbn>9781728103976</isbn><isbn>1728103975</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkF1LwzAYRgMqOOf-gN7kD7S-SZov70b9GhQVOq-8GGmazujaSppZ_Pd2uKsDh4dz8SB0RSAlBPTNqsyXZUqB6FRJoDQTJ2ihpSKSKgJMS3GKZpRwlRBO-Tm6GIZPAAog6Ay9F_7H4TvX9t0Qg4m-725x0Y_Jaz-6gMs4KYuf3T6Y3YQ49uEL5z7YvY8DbvowjbttsnahxfmH6baHWHT2ELpEZ43ZDW5x5By9Pdyv86ekeHlc5csi8UTymGSUMWUqa2shOdcchK0qkFzxylKmQNZNpsFWRNQqA8tqarRwnFtryeQyNkfX_13vnNt8B9-a8Ls5fsH-AG9lUvk</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Marukame, Takao</creator><creator>Kitamura, Toshimitsu</creator><creator>Sugino, Junichi</creator><creator>Ishikawa, Kazuo</creator><creator>Takahashi, Koji</creator><creator>Tamura, Yutaka</creator><creator>Nishi, Yoshifumi</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201905</creationdate><title>Live Demonstration: Low-Power Static Neural Network Circuits for Long-Term Change Detection</title><author>Marukame, Takao ; Kitamura, Toshimitsu ; Sugino, Junichi ; Ishikawa, Kazuo ; Takahashi, Koji ; Tamura, Yutaka ; Nishi, Yoshifumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-42338abccd67559506cbb07585bc23807df490cb16d840c3d2a96e55ccc116d43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Biological neural networks</topic><topic>Deep learning</topic><topic>Field programmable gate arrays</topic><topic>Monitoring</topic><topic>Neurons</topic><toplevel>online_resources</toplevel><creatorcontrib>Marukame, Takao</creatorcontrib><creatorcontrib>Kitamura, Toshimitsu</creatorcontrib><creatorcontrib>Sugino, Junichi</creatorcontrib><creatorcontrib>Ishikawa, Kazuo</creatorcontrib><creatorcontrib>Takahashi, Koji</creatorcontrib><creatorcontrib>Tamura, Yutaka</creatorcontrib><creatorcontrib>Nishi, Yoshifumi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Marukame, Takao</au><au>Kitamura, Toshimitsu</au><au>Sugino, Junichi</au><au>Ishikawa, Kazuo</au><au>Takahashi, Koji</au><au>Tamura, Yutaka</au><au>Nishi, Yoshifumi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Live Demonstration: Low-Power Static Neural Network Circuits for Long-Term Change Detection</atitle><btitle>2019 IEEE International Symposium on Circuits and Systems (ISCAS)</btitle><stitle>ISCAS</stitle><date>2019-05</date><risdate>2019</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2158-1525</issn><isbn>9781728103976</isbn><isbn>1728103975</isbn><abstract>Low power neural network hardware and its new applications have been explored to exploit its inherent advantage of artificial intelligence in comparison with humans. One such application, long-term change detection, is proposed and presented in this live demonstration. Owing to the low power operation in static analog/digital-mixed neural network circuits, our system using them can detect a change of human-friendly information, e.g., handwritten digits, whereas humans have difficulty noticing a gradual change over the long-term.</abstract><pub>IEEE</pub><doi>10.1109/ISCAS.2019.8702246</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2158-1525 |
ispartof | 2019 IEEE International Symposium on Circuits and Systems (ISCAS), 2019, p.1-1 |
issn | 2158-1525 |
language | eng |
recordid | cdi_ieee_primary_8702246 |
source | IEEE Xplore All Conference Series |
subjects | Artificial neural networks Biological neural networks Deep learning Field programmable gate arrays Monitoring Neurons |
title | Live Demonstration: Low-Power Static Neural Network Circuits for Long-Term Change Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A06%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Live%20Demonstration:%20Low-Power%20Static%20Neural%20Network%20Circuits%20for%20Long-Term%20Change%20Detection&rft.btitle=2019%20IEEE%20International%20Symposium%20on%20Circuits%20and%20Systems%20(ISCAS)&rft.au=Marukame,%20Takao&rft.date=2019-05&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2158-1525&rft.isbn=9781728103976&rft.isbn_list=1728103975&rft_id=info:doi/10.1109/ISCAS.2019.8702246&rft_dat=%3Cieee_CHZPO%3E8702246%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-42338abccd67559506cbb07585bc23807df490cb16d840c3d2a96e55ccc116d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8702246&rfr_iscdi=true |