Loading…
Designing Molecular Circuits for Approximate Maximum a Posteriori Demodulation of Concentration Modulated Signals
Motivated by the fact that living cells use molecular circuits (i.e., a set of chemical reactions) for information processing, this paper investigates the problem of designing molecular circuits for demodulation. In our earlier work, we use a Markovian approach to derive a demodulator for diffusion-...
Saved in:
Published in: | IEEE transactions on communications 2019-08, Vol.67 (8), p.5458-5473 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c295t-5e010fcce5be123b8756a8bbba56bbef23a7839bd377f84234159f8d93dca9933 |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-5e010fcce5be123b8756a8bbba56bbef23a7839bd377f84234159f8d93dca9933 |
container_end_page | 5473 |
container_issue | 8 |
container_start_page | 5458 |
container_title | IEEE transactions on communications |
container_volume | 67 |
creator | Chou, Chun Tung |
description | Motivated by the fact that living cells use molecular circuits (i.e., a set of chemical reactions) for information processing, this paper investigates the problem of designing molecular circuits for demodulation. In our earlier work, we use a Markovian approach to derive a demodulator for diffusion-based molecular communication. The demodulation filters take the form of an ordinary differential equation, which computes the log-posteriori probability of a transmission symbol being sent. This paper considers the realization of these demodulation filters using molecular circuits assuming the transmission symbols are rectangular pulses of the same duration but different amplitudes, i.e., concentration modulation. This paper makes a number of contributions. First, we use time-scale separation and renewal theory to analytically derive an approximation of the demodulation filter from our earlier work. Second, we present a method to turn this approximation into a molecular circuit. By using simulations, we show that the output of the derived molecular circuit is approximately equal to the log-posteriori probability calculated by the exact demodulation filter if the log-posteriori probability is positive. Third, we demonstrate that a biochemical circuit in yeast behaves similarly to the derived molecular demodulation filter and is therefore a candidate for implementing the derived filter. |
doi_str_mv | 10.1109/TCOMM.2019.2913864 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8703173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8703173</ieee_id><sourcerecordid>2275589981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-5e010fcce5be123b8756a8bbba56bbef23a7839bd377f84234159f8d93dca9933</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEmPwB-ASiXNHPpomOU4dX9KqITHOVdq6U6at2ZJWgn9PRidOtmy_9usHoXtKZpQS_bTOV0UxY4TqGdOUqyy9QBMqhEqIEvISTQjRJMmkVNfoJoQtISQlnE_QcQHBbjrbbXDhdlAPO-Nxbn092D7g1nk8Pxy8-7Z70wMuTEyGPTb4w4UevHXe4gXsXRN1vXUddi3OXVdD1_uxUIw9aPBnvGN24RZdtTHA3TlO0dfL8zp_S5ar1_d8vkxqpkWfCCCUtHUNogLKeKWkyIyqqsqIrKqgZdxIxXXVcClblTKeUqFb1Wje1EZrzqfocdwb7R8HCH25dYM_OSgZkxGN1orGKTZO1d6F4KEtDz7-6n9KSsoT2vIPbXlCW57RRtHDKLIA8C9QknAqOf8FS-Z3nw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275589981</pqid></control><display><type>article</type><title>Designing Molecular Circuits for Approximate Maximum a Posteriori Demodulation of Concentration Modulated Signals</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chou, Chun Tung</creator><creatorcontrib>Chou, Chun Tung</creatorcontrib><description>Motivated by the fact that living cells use molecular circuits (i.e., a set of chemical reactions) for information processing, this paper investigates the problem of designing molecular circuits for demodulation. In our earlier work, we use a Markovian approach to derive a demodulator for diffusion-based molecular communication. The demodulation filters take the form of an ordinary differential equation, which computes the log-posteriori probability of a transmission symbol being sent. This paper considers the realization of these demodulation filters using molecular circuits assuming the transmission symbols are rectangular pulses of the same duration but different amplitudes, i.e., concentration modulation. This paper makes a number of contributions. First, we use time-scale separation and renewal theory to analytically derive an approximation of the demodulation filter from our earlier work. Second, we present a method to turn this approximation into a molecular circuit. By using simulations, we show that the output of the derived molecular circuit is approximately equal to the log-posteriori probability calculated by the exact demodulation filter if the log-posteriori probability is positive. Third, we demonstrate that a biochemical circuit in yeast behaves similarly to the derived molecular demodulation filter and is therefore a candidate for implementing the derived filter.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2019.2913864</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>analog computation ; Approximation ; Chemical reactions ; Chemicals ; Circuit design ; Computer simulation ; Data processing ; Demodulation ; Demodulators ; Differential equations ; History ; Integrated circuit modeling ; Markov processes ; Mathematical analysis ; Mathematical model ; maximum a posteriori ; molecular circuits ; Molecular communication (telecommunication) ; Molecular communications ; molecular computation ; Ordinary differential equations ; Organic chemistry ; Receivers ; Yeast</subject><ispartof>IEEE transactions on communications, 2019-08, Vol.67 (8), p.5458-5473</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-5e010fcce5be123b8756a8bbba56bbef23a7839bd377f84234159f8d93dca9933</citedby><cites>FETCH-LOGICAL-c295t-5e010fcce5be123b8756a8bbba56bbef23a7839bd377f84234159f8d93dca9933</cites><orcidid>0000-0003-4512-7155</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8703173$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Chou, Chun Tung</creatorcontrib><title>Designing Molecular Circuits for Approximate Maximum a Posteriori Demodulation of Concentration Modulated Signals</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>Motivated by the fact that living cells use molecular circuits (i.e., a set of chemical reactions) for information processing, this paper investigates the problem of designing molecular circuits for demodulation. In our earlier work, we use a Markovian approach to derive a demodulator for diffusion-based molecular communication. The demodulation filters take the form of an ordinary differential equation, which computes the log-posteriori probability of a transmission symbol being sent. This paper considers the realization of these demodulation filters using molecular circuits assuming the transmission symbols are rectangular pulses of the same duration but different amplitudes, i.e., concentration modulation. This paper makes a number of contributions. First, we use time-scale separation and renewal theory to analytically derive an approximation of the demodulation filter from our earlier work. Second, we present a method to turn this approximation into a molecular circuit. By using simulations, we show that the output of the derived molecular circuit is approximately equal to the log-posteriori probability calculated by the exact demodulation filter if the log-posteriori probability is positive. Third, we demonstrate that a biochemical circuit in yeast behaves similarly to the derived molecular demodulation filter and is therefore a candidate for implementing the derived filter.</description><subject>analog computation</subject><subject>Approximation</subject><subject>Chemical reactions</subject><subject>Chemicals</subject><subject>Circuit design</subject><subject>Computer simulation</subject><subject>Data processing</subject><subject>Demodulation</subject><subject>Demodulators</subject><subject>Differential equations</subject><subject>History</subject><subject>Integrated circuit modeling</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>maximum a posteriori</subject><subject>molecular circuits</subject><subject>Molecular communication (telecommunication)</subject><subject>Molecular communications</subject><subject>molecular computation</subject><subject>Ordinary differential equations</subject><subject>Organic chemistry</subject><subject>Receivers</subject><subject>Yeast</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwzAMhiMEEmPwB-ASiXNHPpomOU4dX9KqITHOVdq6U6at2ZJWgn9PRidOtmy_9usHoXtKZpQS_bTOV0UxY4TqGdOUqyy9QBMqhEqIEvISTQjRJMmkVNfoJoQtISQlnE_QcQHBbjrbbXDhdlAPO-Nxbn092D7g1nk8Pxy8-7Z70wMuTEyGPTb4w4UevHXe4gXsXRN1vXUddi3OXVdD1_uxUIw9aPBnvGN24RZdtTHA3TlO0dfL8zp_S5ar1_d8vkxqpkWfCCCUtHUNogLKeKWkyIyqqsqIrKqgZdxIxXXVcClblTKeUqFb1Wje1EZrzqfocdwb7R8HCH25dYM_OSgZkxGN1orGKTZO1d6F4KEtDz7-6n9KSsoT2vIPbXlCW57RRtHDKLIA8C9QknAqOf8FS-Z3nw</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Chou, Chun Tung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4512-7155</orcidid></search><sort><creationdate>20190801</creationdate><title>Designing Molecular Circuits for Approximate Maximum a Posteriori Demodulation of Concentration Modulated Signals</title><author>Chou, Chun Tung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-5e010fcce5be123b8756a8bbba56bbef23a7839bd377f84234159f8d93dca9933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>analog computation</topic><topic>Approximation</topic><topic>Chemical reactions</topic><topic>Chemicals</topic><topic>Circuit design</topic><topic>Computer simulation</topic><topic>Data processing</topic><topic>Demodulation</topic><topic>Demodulators</topic><topic>Differential equations</topic><topic>History</topic><topic>Integrated circuit modeling</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>maximum a posteriori</topic><topic>molecular circuits</topic><topic>Molecular communication (telecommunication)</topic><topic>Molecular communications</topic><topic>molecular computation</topic><topic>Ordinary differential equations</topic><topic>Organic chemistry</topic><topic>Receivers</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chou, Chun Tung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chou, Chun Tung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing Molecular Circuits for Approximate Maximum a Posteriori Demodulation of Concentration Modulated Signals</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>67</volume><issue>8</issue><spage>5458</spage><epage>5473</epage><pages>5458-5473</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>Motivated by the fact that living cells use molecular circuits (i.e., a set of chemical reactions) for information processing, this paper investigates the problem of designing molecular circuits for demodulation. In our earlier work, we use a Markovian approach to derive a demodulator for diffusion-based molecular communication. The demodulation filters take the form of an ordinary differential equation, which computes the log-posteriori probability of a transmission symbol being sent. This paper considers the realization of these demodulation filters using molecular circuits assuming the transmission symbols are rectangular pulses of the same duration but different amplitudes, i.e., concentration modulation. This paper makes a number of contributions. First, we use time-scale separation and renewal theory to analytically derive an approximation of the demodulation filter from our earlier work. Second, we present a method to turn this approximation into a molecular circuit. By using simulations, we show that the output of the derived molecular circuit is approximately equal to the log-posteriori probability calculated by the exact demodulation filter if the log-posteriori probability is positive. Third, we demonstrate that a biochemical circuit in yeast behaves similarly to the derived molecular demodulation filter and is therefore a candidate for implementing the derived filter.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2019.2913864</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4512-7155</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2019-08, Vol.67 (8), p.5458-5473 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_ieee_primary_8703173 |
source | IEEE Electronic Library (IEL) Journals |
subjects | analog computation Approximation Chemical reactions Chemicals Circuit design Computer simulation Data processing Demodulation Demodulators Differential equations History Integrated circuit modeling Markov processes Mathematical analysis Mathematical model maximum a posteriori molecular circuits Molecular communication (telecommunication) Molecular communications molecular computation Ordinary differential equations Organic chemistry Receivers Yeast |
title | Designing Molecular Circuits for Approximate Maximum a Posteriori Demodulation of Concentration Modulated Signals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A07%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20Molecular%20Circuits%20for%20Approximate%20Maximum%20a%20Posteriori%20Demodulation%20of%20Concentration%20Modulated%20Signals&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Chou,%20Chun%20Tung&rft.date=2019-08-01&rft.volume=67&rft.issue=8&rft.spage=5458&rft.epage=5473&rft.pages=5458-5473&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2019.2913864&rft_dat=%3Cproquest_ieee_%3E2275589981%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-5e010fcce5be123b8756a8bbba56bbef23a7839bd377f84234159f8d93dca9933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2275589981&rft_id=info:pmid/&rft_ieee_id=8703173&rfr_iscdi=true |