Loading…

Designing Molecular Circuits for Approximate Maximum a Posteriori Demodulation of Concentration Modulated Signals

Motivated by the fact that living cells use molecular circuits (i.e., a set of chemical reactions) for information processing, this paper investigates the problem of designing molecular circuits for demodulation. In our earlier work, we use a Markovian approach to derive a demodulator for diffusion-...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications 2019-08, Vol.67 (8), p.5458-5473
Main Author: Chou, Chun Tung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-5e010fcce5be123b8756a8bbba56bbef23a7839bd377f84234159f8d93dca9933
cites cdi_FETCH-LOGICAL-c295t-5e010fcce5be123b8756a8bbba56bbef23a7839bd377f84234159f8d93dca9933
container_end_page 5473
container_issue 8
container_start_page 5458
container_title IEEE transactions on communications
container_volume 67
creator Chou, Chun Tung
description Motivated by the fact that living cells use molecular circuits (i.e., a set of chemical reactions) for information processing, this paper investigates the problem of designing molecular circuits for demodulation. In our earlier work, we use a Markovian approach to derive a demodulator for diffusion-based molecular communication. The demodulation filters take the form of an ordinary differential equation, which computes the log-posteriori probability of a transmission symbol being sent. This paper considers the realization of these demodulation filters using molecular circuits assuming the transmission symbols are rectangular pulses of the same duration but different amplitudes, i.e., concentration modulation. This paper makes a number of contributions. First, we use time-scale separation and renewal theory to analytically derive an approximation of the demodulation filter from our earlier work. Second, we present a method to turn this approximation into a molecular circuit. By using simulations, we show that the output of the derived molecular circuit is approximately equal to the log-posteriori probability calculated by the exact demodulation filter if the log-posteriori probability is positive. Third, we demonstrate that a biochemical circuit in yeast behaves similarly to the derived molecular demodulation filter and is therefore a candidate for implementing the derived filter.
doi_str_mv 10.1109/TCOMM.2019.2913864
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8703173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8703173</ieee_id><sourcerecordid>2275589981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-5e010fcce5be123b8756a8bbba56bbef23a7839bd377f84234159f8d93dca9933</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEmPwB-ASiXNHPpomOU4dX9KqITHOVdq6U6at2ZJWgn9PRidOtmy_9usHoXtKZpQS_bTOV0UxY4TqGdOUqyy9QBMqhEqIEvISTQjRJMmkVNfoJoQtISQlnE_QcQHBbjrbbXDhdlAPO-Nxbn092D7g1nk8Pxy8-7Z70wMuTEyGPTb4w4UevHXe4gXsXRN1vXUddi3OXVdD1_uxUIw9aPBnvGN24RZdtTHA3TlO0dfL8zp_S5ar1_d8vkxqpkWfCCCUtHUNogLKeKWkyIyqqsqIrKqgZdxIxXXVcClblTKeUqFb1Wje1EZrzqfocdwb7R8HCH25dYM_OSgZkxGN1orGKTZO1d6F4KEtDz7-6n9KSsoT2vIPbXlCW57RRtHDKLIA8C9QknAqOf8FS-Z3nw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275589981</pqid></control><display><type>article</type><title>Designing Molecular Circuits for Approximate Maximum a Posteriori Demodulation of Concentration Modulated Signals</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chou, Chun Tung</creator><creatorcontrib>Chou, Chun Tung</creatorcontrib><description>Motivated by the fact that living cells use molecular circuits (i.e., a set of chemical reactions) for information processing, this paper investigates the problem of designing molecular circuits for demodulation. In our earlier work, we use a Markovian approach to derive a demodulator for diffusion-based molecular communication. The demodulation filters take the form of an ordinary differential equation, which computes the log-posteriori probability of a transmission symbol being sent. This paper considers the realization of these demodulation filters using molecular circuits assuming the transmission symbols are rectangular pulses of the same duration but different amplitudes, i.e., concentration modulation. This paper makes a number of contributions. First, we use time-scale separation and renewal theory to analytically derive an approximation of the demodulation filter from our earlier work. Second, we present a method to turn this approximation into a molecular circuit. By using simulations, we show that the output of the derived molecular circuit is approximately equal to the log-posteriori probability calculated by the exact demodulation filter if the log-posteriori probability is positive. Third, we demonstrate that a biochemical circuit in yeast behaves similarly to the derived molecular demodulation filter and is therefore a candidate for implementing the derived filter.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2019.2913864</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>analog computation ; Approximation ; Chemical reactions ; Chemicals ; Circuit design ; Computer simulation ; Data processing ; Demodulation ; Demodulators ; Differential equations ; History ; Integrated circuit modeling ; Markov processes ; Mathematical analysis ; Mathematical model ; maximum a posteriori ; molecular circuits ; Molecular communication (telecommunication) ; Molecular communications ; molecular computation ; Ordinary differential equations ; Organic chemistry ; Receivers ; Yeast</subject><ispartof>IEEE transactions on communications, 2019-08, Vol.67 (8), p.5458-5473</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-5e010fcce5be123b8756a8bbba56bbef23a7839bd377f84234159f8d93dca9933</citedby><cites>FETCH-LOGICAL-c295t-5e010fcce5be123b8756a8bbba56bbef23a7839bd377f84234159f8d93dca9933</cites><orcidid>0000-0003-4512-7155</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8703173$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Chou, Chun Tung</creatorcontrib><title>Designing Molecular Circuits for Approximate Maximum a Posteriori Demodulation of Concentration Modulated Signals</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>Motivated by the fact that living cells use molecular circuits (i.e., a set of chemical reactions) for information processing, this paper investigates the problem of designing molecular circuits for demodulation. In our earlier work, we use a Markovian approach to derive a demodulator for diffusion-based molecular communication. The demodulation filters take the form of an ordinary differential equation, which computes the log-posteriori probability of a transmission symbol being sent. This paper considers the realization of these demodulation filters using molecular circuits assuming the transmission symbols are rectangular pulses of the same duration but different amplitudes, i.e., concentration modulation. This paper makes a number of contributions. First, we use time-scale separation and renewal theory to analytically derive an approximation of the demodulation filter from our earlier work. Second, we present a method to turn this approximation into a molecular circuit. By using simulations, we show that the output of the derived molecular circuit is approximately equal to the log-posteriori probability calculated by the exact demodulation filter if the log-posteriori probability is positive. Third, we demonstrate that a biochemical circuit in yeast behaves similarly to the derived molecular demodulation filter and is therefore a candidate for implementing the derived filter.</description><subject>analog computation</subject><subject>Approximation</subject><subject>Chemical reactions</subject><subject>Chemicals</subject><subject>Circuit design</subject><subject>Computer simulation</subject><subject>Data processing</subject><subject>Demodulation</subject><subject>Demodulators</subject><subject>Differential equations</subject><subject>History</subject><subject>Integrated circuit modeling</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>maximum a posteriori</subject><subject>molecular circuits</subject><subject>Molecular communication (telecommunication)</subject><subject>Molecular communications</subject><subject>molecular computation</subject><subject>Ordinary differential equations</subject><subject>Organic chemistry</subject><subject>Receivers</subject><subject>Yeast</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwzAMhiMEEmPwB-ASiXNHPpomOU4dX9KqITHOVdq6U6at2ZJWgn9PRidOtmy_9usHoXtKZpQS_bTOV0UxY4TqGdOUqyy9QBMqhEqIEvISTQjRJMmkVNfoJoQtISQlnE_QcQHBbjrbbXDhdlAPO-Nxbn092D7g1nk8Pxy8-7Z70wMuTEyGPTb4w4UevHXe4gXsXRN1vXUddi3OXVdD1_uxUIw9aPBnvGN24RZdtTHA3TlO0dfL8zp_S5ar1_d8vkxqpkWfCCCUtHUNogLKeKWkyIyqqsqIrKqgZdxIxXXVcClblTKeUqFb1Wje1EZrzqfocdwb7R8HCH25dYM_OSgZkxGN1orGKTZO1d6F4KEtDz7-6n9KSsoT2vIPbXlCW57RRtHDKLIA8C9QknAqOf8FS-Z3nw</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Chou, Chun Tung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4512-7155</orcidid></search><sort><creationdate>20190801</creationdate><title>Designing Molecular Circuits for Approximate Maximum a Posteriori Demodulation of Concentration Modulated Signals</title><author>Chou, Chun Tung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-5e010fcce5be123b8756a8bbba56bbef23a7839bd377f84234159f8d93dca9933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>analog computation</topic><topic>Approximation</topic><topic>Chemical reactions</topic><topic>Chemicals</topic><topic>Circuit design</topic><topic>Computer simulation</topic><topic>Data processing</topic><topic>Demodulation</topic><topic>Demodulators</topic><topic>Differential equations</topic><topic>History</topic><topic>Integrated circuit modeling</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>maximum a posteriori</topic><topic>molecular circuits</topic><topic>Molecular communication (telecommunication)</topic><topic>Molecular communications</topic><topic>molecular computation</topic><topic>Ordinary differential equations</topic><topic>Organic chemistry</topic><topic>Receivers</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chou, Chun Tung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chou, Chun Tung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing Molecular Circuits for Approximate Maximum a Posteriori Demodulation of Concentration Modulated Signals</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>67</volume><issue>8</issue><spage>5458</spage><epage>5473</epage><pages>5458-5473</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>Motivated by the fact that living cells use molecular circuits (i.e., a set of chemical reactions) for information processing, this paper investigates the problem of designing molecular circuits for demodulation. In our earlier work, we use a Markovian approach to derive a demodulator for diffusion-based molecular communication. The demodulation filters take the form of an ordinary differential equation, which computes the log-posteriori probability of a transmission symbol being sent. This paper considers the realization of these demodulation filters using molecular circuits assuming the transmission symbols are rectangular pulses of the same duration but different amplitudes, i.e., concentration modulation. This paper makes a number of contributions. First, we use time-scale separation and renewal theory to analytically derive an approximation of the demodulation filter from our earlier work. Second, we present a method to turn this approximation into a molecular circuit. By using simulations, we show that the output of the derived molecular circuit is approximately equal to the log-posteriori probability calculated by the exact demodulation filter if the log-posteriori probability is positive. Third, we demonstrate that a biochemical circuit in yeast behaves similarly to the derived molecular demodulation filter and is therefore a candidate for implementing the derived filter.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2019.2913864</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4512-7155</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2019-08, Vol.67 (8), p.5458-5473
issn 0090-6778
1558-0857
language eng
recordid cdi_ieee_primary_8703173
source IEEE Electronic Library (IEL) Journals
subjects analog computation
Approximation
Chemical reactions
Chemicals
Circuit design
Computer simulation
Data processing
Demodulation
Demodulators
Differential equations
History
Integrated circuit modeling
Markov processes
Mathematical analysis
Mathematical model
maximum a posteriori
molecular circuits
Molecular communication (telecommunication)
Molecular communications
molecular computation
Ordinary differential equations
Organic chemistry
Receivers
Yeast
title Designing Molecular Circuits for Approximate Maximum a Posteriori Demodulation of Concentration Modulated Signals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A07%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20Molecular%20Circuits%20for%20Approximate%20Maximum%20a%20Posteriori%20Demodulation%20of%20Concentration%20Modulated%20Signals&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Chou,%20Chun%20Tung&rft.date=2019-08-01&rft.volume=67&rft.issue=8&rft.spage=5458&rft.epage=5473&rft.pages=5458-5473&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2019.2913864&rft_dat=%3Cproquest_ieee_%3E2275589981%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-5e010fcce5be123b8756a8bbba56bbef23a7839bd377f84234159f8d93dca9933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2275589981&rft_id=info:pmid/&rft_ieee_id=8703173&rfr_iscdi=true