Loading…

Monte Carlo simulation of noncubic symmetry semiconducting materials and devices

In this paper, we discuss the complexities that arise in Monte Carlo based modeling of noncubic symmetry semiconductors and their related devices. We have identified three general issues, band structure, scattering mechanisms, and band intersections that require some modification of the Monte Carlo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2000-10, Vol.47 (10), p.1882-1890
Main Authors: Brennan, K.F., Bellotti, E., Farahmand, M., Nilsson, H.-E., Ruden, P.P., Yumin Zhang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c436t-8b23d8b092c9c386a556c13e82aeaf526d5201f490dccbf6ae82f229525361da3
cites cdi_FETCH-LOGICAL-c436t-8b23d8b092c9c386a556c13e82aeaf526d5201f490dccbf6ae82f229525361da3
container_end_page 1890
container_issue 10
container_start_page 1882
container_title IEEE transactions on electron devices
container_volume 47
creator Brennan, K.F.
Bellotti, E.
Farahmand, M.
Nilsson, H.-E.
Ruden, P.P.
Yumin Zhang
description In this paper, we discuss the complexities that arise in Monte Carlo based modeling of noncubic symmetry semiconductors and their related devices. We have identified three general issues, band structure, scattering mechanisms, and band intersections that require some modification of the Monte Carlo simulator from that for cubic symmetry. Owing to the increased size and number of atoms per unit cell, the band structure is far more complex in noncubic than in zincblende phase semiconductors. This added complexity is reflected by the greater number of bands, smaller Brillouin zone and concomitant increase in the number of band intersections. We present strategies for modeling the effects of band intersections on the carrier dynamics using the Monte Carlo method. It is found that the band intersection points greatly affect the carrier transport, most dramatically in the determination of the impact ionization and breakdown properties of devices and bulk material. Excellent agreement with experimental measurements of the impact ionization coefficients is obtained only when treatment of the band intersections is included within the model.
doi_str_mv 10.1109/16.870567
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_870567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>870567</ieee_id><sourcerecordid>28391274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-8b23d8b092c9c386a556c13e82aeaf526d5201f490dccbf6ae82f229525361da3</originalsourceid><addsrcrecordid>eNqF0s1LHDEYBvBQFLpue_DaU-hBKnRsPiaZ5ChbbQuKHtRryGTekchMsk1mLPvfGxnx0IMeQkieHw8kvAgdUnJCKdE_qDxRDRGy-YBWVIim0rKWe2hFCFWV5op_RAc5P5SjrGu2QteXMUyANzYNEWc_zoOdfAw49jjE4ObWO5x34whT2uEMo3cxdLObfLjHo50geTtkbEOHO3j0DvIntN-XK_j8sq_R7fnZzeZ3dXH168_m9KJyNZdTpVrGO9USzZx2XEkrhHSUg2IWbC-Y7AQjtK816Zxre2lL0jOmBRNc0s7yNfq-9OZ_sJ1bs01-tGlnovXmp787NTHdm9HPwVCtdOFHC9-m-HeGPJUsOxgGGyDO2bBiWFPK34dcU9bU78NGKEoYKfDbm5DKhjLNn9caff2PPsQ5hfKPRinBmFBEFXS8IJdizgn617dTYp6HoDSaZQiK_bJYDwCv7iV8Av1Kq7M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885225808</pqid></control><display><type>article</type><title>Monte Carlo simulation of noncubic symmetry semiconducting materials and devices</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Brennan, K.F. ; Bellotti, E. ; Farahmand, M. ; Nilsson, H.-E. ; Ruden, P.P. ; Yumin Zhang</creator><creatorcontrib>Brennan, K.F. ; Bellotti, E. ; Farahmand, M. ; Nilsson, H.-E. ; Ruden, P.P. ; Yumin Zhang</creatorcontrib><description>In this paper, we discuss the complexities that arise in Monte Carlo based modeling of noncubic symmetry semiconductors and their related devices. We have identified three general issues, band structure, scattering mechanisms, and band intersections that require some modification of the Monte Carlo simulator from that for cubic symmetry. Owing to the increased size and number of atoms per unit cell, the band structure is far more complex in noncubic than in zincblende phase semiconductors. This added complexity is reflected by the greater number of bands, smaller Brillouin zone and concomitant increase in the number of band intersections. We present strategies for modeling the effects of band intersections on the carrier dynamics using the Monte Carlo method. It is found that the band intersection points greatly affect the carrier transport, most dramatically in the determination of the impact ionization and breakdown properties of devices and bulk material. Excellent agreement with experimental measurements of the impact ionization coefficients is obtained only when treatment of the band intersections is included within the model.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/16.870567</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Band structure of solids ; charge transport ; Complexity ; Computer simulation ; Devices ; Electrical engineering, electronics and photonics ; Elektroteknik, elektronik och fotonik ; Intersections ; Monte Carlo methods ; Monte Carlo simulation ; Semiconductor device modeling ; Semiconductors ; Symmetry ; TECHNOLOGY ; TEKNIKVETENSKAP</subject><ispartof>IEEE transactions on electron devices, 2000-10, Vol.47 (10), p.1882-1890</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-8b23d8b092c9c386a556c13e82aeaf526d5201f490dccbf6ae82f229525361da3</citedby><cites>FETCH-LOGICAL-c436t-8b23d8b092c9c386a556c13e82aeaf526d5201f490dccbf6ae82f229525361da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/870567$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-1989$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Brennan, K.F.</creatorcontrib><creatorcontrib>Bellotti, E.</creatorcontrib><creatorcontrib>Farahmand, M.</creatorcontrib><creatorcontrib>Nilsson, H.-E.</creatorcontrib><creatorcontrib>Ruden, P.P.</creatorcontrib><creatorcontrib>Yumin Zhang</creatorcontrib><title>Monte Carlo simulation of noncubic symmetry semiconducting materials and devices</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this paper, we discuss the complexities that arise in Monte Carlo based modeling of noncubic symmetry semiconductors and their related devices. We have identified three general issues, band structure, scattering mechanisms, and band intersections that require some modification of the Monte Carlo simulator from that for cubic symmetry. Owing to the increased size and number of atoms per unit cell, the band structure is far more complex in noncubic than in zincblende phase semiconductors. This added complexity is reflected by the greater number of bands, smaller Brillouin zone and concomitant increase in the number of band intersections. We present strategies for modeling the effects of band intersections on the carrier dynamics using the Monte Carlo method. It is found that the band intersection points greatly affect the carrier transport, most dramatically in the determination of the impact ionization and breakdown properties of devices and bulk material. Excellent agreement with experimental measurements of the impact ionization coefficients is obtained only when treatment of the band intersections is included within the model.</description><subject>Band structure of solids</subject><subject>charge transport</subject><subject>Complexity</subject><subject>Computer simulation</subject><subject>Devices</subject><subject>Electrical engineering, electronics and photonics</subject><subject>Elektroteknik, elektronik och fotonik</subject><subject>Intersections</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Semiconductor device modeling</subject><subject>Semiconductors</subject><subject>Symmetry</subject><subject>TECHNOLOGY</subject><subject>TEKNIKVETENSKAP</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqF0s1LHDEYBvBQFLpue_DaU-hBKnRsPiaZ5ChbbQuKHtRryGTekchMsk1mLPvfGxnx0IMeQkieHw8kvAgdUnJCKdE_qDxRDRGy-YBWVIim0rKWe2hFCFWV5op_RAc5P5SjrGu2QteXMUyANzYNEWc_zoOdfAw49jjE4ObWO5x34whT2uEMo3cxdLObfLjHo50geTtkbEOHO3j0DvIntN-XK_j8sq_R7fnZzeZ3dXH168_m9KJyNZdTpVrGO9USzZx2XEkrhHSUg2IWbC-Y7AQjtK816Zxre2lL0jOmBRNc0s7yNfq-9OZ_sJ1bs01-tGlnovXmp787NTHdm9HPwVCtdOFHC9-m-HeGPJUsOxgGGyDO2bBiWFPK34dcU9bU78NGKEoYKfDbm5DKhjLNn9caff2PPsQ5hfKPRinBmFBEFXS8IJdizgn617dTYp6HoDSaZQiK_bJYDwCv7iV8Av1Kq7M</recordid><startdate>20001001</startdate><enddate>20001001</enddate><creator>Brennan, K.F.</creator><creator>Bellotti, E.</creator><creator>Farahmand, M.</creator><creator>Nilsson, H.-E.</creator><creator>Ruden, P.P.</creator><creator>Yumin Zhang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>7U5</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG5</scope></search><sort><creationdate>20001001</creationdate><title>Monte Carlo simulation of noncubic symmetry semiconducting materials and devices</title><author>Brennan, K.F. ; Bellotti, E. ; Farahmand, M. ; Nilsson, H.-E. ; Ruden, P.P. ; Yumin Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-8b23d8b092c9c386a556c13e82aeaf526d5201f490dccbf6ae82f229525361da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Band structure of solids</topic><topic>charge transport</topic><topic>Complexity</topic><topic>Computer simulation</topic><topic>Devices</topic><topic>Electrical engineering, electronics and photonics</topic><topic>Elektroteknik, elektronik och fotonik</topic><topic>Intersections</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Semiconductor device modeling</topic><topic>Semiconductors</topic><topic>Symmetry</topic><topic>TECHNOLOGY</topic><topic>TEKNIKVETENSKAP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brennan, K.F.</creatorcontrib><creatorcontrib>Bellotti, E.</creatorcontrib><creatorcontrib>Farahmand, M.</creatorcontrib><creatorcontrib>Nilsson, H.-E.</creatorcontrib><creatorcontrib>Ruden, P.P.</creatorcontrib><creatorcontrib>Yumin Zhang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Mittuniversitetet</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brennan, K.F.</au><au>Bellotti, E.</au><au>Farahmand, M.</au><au>Nilsson, H.-E.</au><au>Ruden, P.P.</au><au>Yumin Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo simulation of noncubic symmetry semiconducting materials and devices</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2000-10-01</date><risdate>2000</risdate><volume>47</volume><issue>10</issue><spage>1882</spage><epage>1890</epage><pages>1882-1890</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this paper, we discuss the complexities that arise in Monte Carlo based modeling of noncubic symmetry semiconductors and their related devices. We have identified three general issues, band structure, scattering mechanisms, and band intersections that require some modification of the Monte Carlo simulator from that for cubic symmetry. Owing to the increased size and number of atoms per unit cell, the band structure is far more complex in noncubic than in zincblende phase semiconductors. This added complexity is reflected by the greater number of bands, smaller Brillouin zone and concomitant increase in the number of band intersections. We present strategies for modeling the effects of band intersections on the carrier dynamics using the Monte Carlo method. It is found that the band intersection points greatly affect the carrier transport, most dramatically in the determination of the impact ionization and breakdown properties of devices and bulk material. Excellent agreement with experimental measurements of the impact ionization coefficients is obtained only when treatment of the band intersections is included within the model.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/16.870567</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2000-10, Vol.47 (10), p.1882-1890
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_870567
source IEEE Electronic Library (IEL) Journals
subjects Band structure of solids
charge transport
Complexity
Computer simulation
Devices
Electrical engineering, electronics and photonics
Elektroteknik, elektronik och fotonik
Intersections
Monte Carlo methods
Monte Carlo simulation
Semiconductor device modeling
Semiconductors
Symmetry
TECHNOLOGY
TEKNIKVETENSKAP
title Monte Carlo simulation of noncubic symmetry semiconducting materials and devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A33%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20simulation%20of%20noncubic%20symmetry%20semiconducting%20materials%20and%20devices&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Brennan,%20K.F.&rft.date=2000-10-01&rft.volume=47&rft.issue=10&rft.spage=1882&rft.epage=1890&rft.pages=1882-1890&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/16.870567&rft_dat=%3Cproquest_ieee_%3E28391274%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-8b23d8b092c9c386a556c13e82aeaf526d5201f490dccbf6ae82f229525361da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=885225808&rft_id=info:pmid/&rft_ieee_id=870567&rfr_iscdi=true