Loading…
Monte Carlo simulation of noncubic symmetry semiconducting materials and devices
In this paper, we discuss the complexities that arise in Monte Carlo based modeling of noncubic symmetry semiconductors and their related devices. We have identified three general issues, band structure, scattering mechanisms, and band intersections that require some modification of the Monte Carlo...
Saved in:
Published in: | IEEE transactions on electron devices 2000-10, Vol.47 (10), p.1882-1890 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c436t-8b23d8b092c9c386a556c13e82aeaf526d5201f490dccbf6ae82f229525361da3 |
---|---|
cites | cdi_FETCH-LOGICAL-c436t-8b23d8b092c9c386a556c13e82aeaf526d5201f490dccbf6ae82f229525361da3 |
container_end_page | 1890 |
container_issue | 10 |
container_start_page | 1882 |
container_title | IEEE transactions on electron devices |
container_volume | 47 |
creator | Brennan, K.F. Bellotti, E. Farahmand, M. Nilsson, H.-E. Ruden, P.P. Yumin Zhang |
description | In this paper, we discuss the complexities that arise in Monte Carlo based modeling of noncubic symmetry semiconductors and their related devices. We have identified three general issues, band structure, scattering mechanisms, and band intersections that require some modification of the Monte Carlo simulator from that for cubic symmetry. Owing to the increased size and number of atoms per unit cell, the band structure is far more complex in noncubic than in zincblende phase semiconductors. This added complexity is reflected by the greater number of bands, smaller Brillouin zone and concomitant increase in the number of band intersections. We present strategies for modeling the effects of band intersections on the carrier dynamics using the Monte Carlo method. It is found that the band intersection points greatly affect the carrier transport, most dramatically in the determination of the impact ionization and breakdown properties of devices and bulk material. Excellent agreement with experimental measurements of the impact ionization coefficients is obtained only when treatment of the band intersections is included within the model. |
doi_str_mv | 10.1109/16.870567 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_870567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>870567</ieee_id><sourcerecordid>28391274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-8b23d8b092c9c386a556c13e82aeaf526d5201f490dccbf6ae82f229525361da3</originalsourceid><addsrcrecordid>eNqF0s1LHDEYBvBQFLpue_DaU-hBKnRsPiaZ5ChbbQuKHtRryGTekchMsk1mLPvfGxnx0IMeQkieHw8kvAgdUnJCKdE_qDxRDRGy-YBWVIim0rKWe2hFCFWV5op_RAc5P5SjrGu2QteXMUyANzYNEWc_zoOdfAw49jjE4ObWO5x34whT2uEMo3cxdLObfLjHo50geTtkbEOHO3j0DvIntN-XK_j8sq_R7fnZzeZ3dXH168_m9KJyNZdTpVrGO9USzZx2XEkrhHSUg2IWbC-Y7AQjtK816Zxre2lL0jOmBRNc0s7yNfq-9OZ_sJ1bs01-tGlnovXmp787NTHdm9HPwVCtdOFHC9-m-HeGPJUsOxgGGyDO2bBiWFPK34dcU9bU78NGKEoYKfDbm5DKhjLNn9caff2PPsQ5hfKPRinBmFBEFXS8IJdizgn617dTYp6HoDSaZQiK_bJYDwCv7iV8Av1Kq7M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885225808</pqid></control><display><type>article</type><title>Monte Carlo simulation of noncubic symmetry semiconducting materials and devices</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Brennan, K.F. ; Bellotti, E. ; Farahmand, M. ; Nilsson, H.-E. ; Ruden, P.P. ; Yumin Zhang</creator><creatorcontrib>Brennan, K.F. ; Bellotti, E. ; Farahmand, M. ; Nilsson, H.-E. ; Ruden, P.P. ; Yumin Zhang</creatorcontrib><description>In this paper, we discuss the complexities that arise in Monte Carlo based modeling of noncubic symmetry semiconductors and their related devices. We have identified three general issues, band structure, scattering mechanisms, and band intersections that require some modification of the Monte Carlo simulator from that for cubic symmetry. Owing to the increased size and number of atoms per unit cell, the band structure is far more complex in noncubic than in zincblende phase semiconductors. This added complexity is reflected by the greater number of bands, smaller Brillouin zone and concomitant increase in the number of band intersections. We present strategies for modeling the effects of band intersections on the carrier dynamics using the Monte Carlo method. It is found that the band intersection points greatly affect the carrier transport, most dramatically in the determination of the impact ionization and breakdown properties of devices and bulk material. Excellent agreement with experimental measurements of the impact ionization coefficients is obtained only when treatment of the band intersections is included within the model.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/16.870567</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Band structure of solids ; charge transport ; Complexity ; Computer simulation ; Devices ; Electrical engineering, electronics and photonics ; Elektroteknik, elektronik och fotonik ; Intersections ; Monte Carlo methods ; Monte Carlo simulation ; Semiconductor device modeling ; Semiconductors ; Symmetry ; TECHNOLOGY ; TEKNIKVETENSKAP</subject><ispartof>IEEE transactions on electron devices, 2000-10, Vol.47 (10), p.1882-1890</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-8b23d8b092c9c386a556c13e82aeaf526d5201f490dccbf6ae82f229525361da3</citedby><cites>FETCH-LOGICAL-c436t-8b23d8b092c9c386a556c13e82aeaf526d5201f490dccbf6ae82f229525361da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/870567$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-1989$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Brennan, K.F.</creatorcontrib><creatorcontrib>Bellotti, E.</creatorcontrib><creatorcontrib>Farahmand, M.</creatorcontrib><creatorcontrib>Nilsson, H.-E.</creatorcontrib><creatorcontrib>Ruden, P.P.</creatorcontrib><creatorcontrib>Yumin Zhang</creatorcontrib><title>Monte Carlo simulation of noncubic symmetry semiconducting materials and devices</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this paper, we discuss the complexities that arise in Monte Carlo based modeling of noncubic symmetry semiconductors and their related devices. We have identified three general issues, band structure, scattering mechanisms, and band intersections that require some modification of the Monte Carlo simulator from that for cubic symmetry. Owing to the increased size and number of atoms per unit cell, the band structure is far more complex in noncubic than in zincblende phase semiconductors. This added complexity is reflected by the greater number of bands, smaller Brillouin zone and concomitant increase in the number of band intersections. We present strategies for modeling the effects of band intersections on the carrier dynamics using the Monte Carlo method. It is found that the band intersection points greatly affect the carrier transport, most dramatically in the determination of the impact ionization and breakdown properties of devices and bulk material. Excellent agreement with experimental measurements of the impact ionization coefficients is obtained only when treatment of the band intersections is included within the model.</description><subject>Band structure of solids</subject><subject>charge transport</subject><subject>Complexity</subject><subject>Computer simulation</subject><subject>Devices</subject><subject>Electrical engineering, electronics and photonics</subject><subject>Elektroteknik, elektronik och fotonik</subject><subject>Intersections</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Semiconductor device modeling</subject><subject>Semiconductors</subject><subject>Symmetry</subject><subject>TECHNOLOGY</subject><subject>TEKNIKVETENSKAP</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqF0s1LHDEYBvBQFLpue_DaU-hBKnRsPiaZ5ChbbQuKHtRryGTekchMsk1mLPvfGxnx0IMeQkieHw8kvAgdUnJCKdE_qDxRDRGy-YBWVIim0rKWe2hFCFWV5op_RAc5P5SjrGu2QteXMUyANzYNEWc_zoOdfAw49jjE4ObWO5x34whT2uEMo3cxdLObfLjHo50geTtkbEOHO3j0DvIntN-XK_j8sq_R7fnZzeZ3dXH168_m9KJyNZdTpVrGO9USzZx2XEkrhHSUg2IWbC-Y7AQjtK816Zxre2lL0jOmBRNc0s7yNfq-9OZ_sJ1bs01-tGlnovXmp787NTHdm9HPwVCtdOFHC9-m-HeGPJUsOxgGGyDO2bBiWFPK34dcU9bU78NGKEoYKfDbm5DKhjLNn9caff2PPsQ5hfKPRinBmFBEFXS8IJdizgn617dTYp6HoDSaZQiK_bJYDwCv7iV8Av1Kq7M</recordid><startdate>20001001</startdate><enddate>20001001</enddate><creator>Brennan, K.F.</creator><creator>Bellotti, E.</creator><creator>Farahmand, M.</creator><creator>Nilsson, H.-E.</creator><creator>Ruden, P.P.</creator><creator>Yumin Zhang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>7U5</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG5</scope></search><sort><creationdate>20001001</creationdate><title>Monte Carlo simulation of noncubic symmetry semiconducting materials and devices</title><author>Brennan, K.F. ; Bellotti, E. ; Farahmand, M. ; Nilsson, H.-E. ; Ruden, P.P. ; Yumin Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-8b23d8b092c9c386a556c13e82aeaf526d5201f490dccbf6ae82f229525361da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Band structure of solids</topic><topic>charge transport</topic><topic>Complexity</topic><topic>Computer simulation</topic><topic>Devices</topic><topic>Electrical engineering, electronics and photonics</topic><topic>Elektroteknik, elektronik och fotonik</topic><topic>Intersections</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Semiconductor device modeling</topic><topic>Semiconductors</topic><topic>Symmetry</topic><topic>TECHNOLOGY</topic><topic>TEKNIKVETENSKAP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brennan, K.F.</creatorcontrib><creatorcontrib>Bellotti, E.</creatorcontrib><creatorcontrib>Farahmand, M.</creatorcontrib><creatorcontrib>Nilsson, H.-E.</creatorcontrib><creatorcontrib>Ruden, P.P.</creatorcontrib><creatorcontrib>Yumin Zhang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Mittuniversitetet</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brennan, K.F.</au><au>Bellotti, E.</au><au>Farahmand, M.</au><au>Nilsson, H.-E.</au><au>Ruden, P.P.</au><au>Yumin Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo simulation of noncubic symmetry semiconducting materials and devices</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2000-10-01</date><risdate>2000</risdate><volume>47</volume><issue>10</issue><spage>1882</spage><epage>1890</epage><pages>1882-1890</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this paper, we discuss the complexities that arise in Monte Carlo based modeling of noncubic symmetry semiconductors and their related devices. We have identified three general issues, band structure, scattering mechanisms, and band intersections that require some modification of the Monte Carlo simulator from that for cubic symmetry. Owing to the increased size and number of atoms per unit cell, the band structure is far more complex in noncubic than in zincblende phase semiconductors. This added complexity is reflected by the greater number of bands, smaller Brillouin zone and concomitant increase in the number of band intersections. We present strategies for modeling the effects of band intersections on the carrier dynamics using the Monte Carlo method. It is found that the band intersection points greatly affect the carrier transport, most dramatically in the determination of the impact ionization and breakdown properties of devices and bulk material. Excellent agreement with experimental measurements of the impact ionization coefficients is obtained only when treatment of the band intersections is included within the model.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/16.870567</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2000-10, Vol.47 (10), p.1882-1890 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_ieee_primary_870567 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Band structure of solids charge transport Complexity Computer simulation Devices Electrical engineering, electronics and photonics Elektroteknik, elektronik och fotonik Intersections Monte Carlo methods Monte Carlo simulation Semiconductor device modeling Semiconductors Symmetry TECHNOLOGY TEKNIKVETENSKAP |
title | Monte Carlo simulation of noncubic symmetry semiconducting materials and devices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A33%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20simulation%20of%20noncubic%20symmetry%20semiconducting%20materials%20and%20devices&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Brennan,%20K.F.&rft.date=2000-10-01&rft.volume=47&rft.issue=10&rft.spage=1882&rft.epage=1890&rft.pages=1882-1890&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/16.870567&rft_dat=%3Cproquest_ieee_%3E28391274%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-8b23d8b092c9c386a556c13e82aeaf526d5201f490dccbf6ae82f229525361da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=885225808&rft_id=info:pmid/&rft_ieee_id=870567&rfr_iscdi=true |