Loading…
Fast Adaptive Smoothing and Thresholding for Improved Activation Detection in Low-Signal fMRI
Functional magnetic resonance imaging is a noninvasive tool for studying cerebral function. Many factors challenge activation detection, especially in low-signal scenarios that arise in the performance of high-level cognitive tasks. We provide a fully automated fast adaptive smoothing and thresholdi...
Saved in:
Published in: | IEEE transactions on medical imaging 2019-12, Vol.38 (12), p.2821-2828 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Functional magnetic resonance imaging is a noninvasive tool for studying cerebral function. Many factors challenge activation detection, especially in low-signal scenarios that arise in the performance of high-level cognitive tasks. We provide a fully automated fast adaptive smoothing and thresholding (FAST) algorithm that uses smoothing and extreme value theory on correlated statistical parametric maps for thresholding. Performance on experiments spanning a range of low-signal settings is very encouraging. The methodology also performs well in a study to identify the cerebral regions that perceive only-auditory-reliable or only-visual-reliable speech stimuli. |
---|---|
ISSN: | 0278-0062 1558-254X |
DOI: | 10.1109/TMI.2019.2915052 |