Loading…
Transfer and Online Reinforcement Learning in STT-MRAM Based Embedded Systems for Autonomous Drones
In this paper we present an algorithm-hardware co-design for camera-based autonomous flight in small drones. We show that the large write-latency and write-energy for nonvolatile memory (NVM) based embedded systems makes them unsuitable for real-time reinforcement learning (RL). We address this by p...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we present an algorithm-hardware co-design for camera-based autonomous flight in small drones. We show that the large write-latency and write-energy for nonvolatile memory (NVM) based embedded systems makes them unsuitable for real-time reinforcement learning (RL). We address this by performing transfer learning (TL) on meta-environments and RL on the last few layers of a deep convolutional network. While the NVM stores the meta-model from TL, an on-die SRAM stores the weights of the last few layers. Thus all the real-time updates via RL are carried out on the SRAM arrays. This provides us with a practical platform with comparable performance as end-to-end RL and 83.4% lower energy per image frame. |
---|---|
ISSN: | 1558-1101 |
DOI: | 10.23919/DATE.2019.8715066 |