Loading…
Widely Wavelength-Tunable Mode-Locked Fiber Laser Based on a 45°-Tilted Fiber Grating and Polarization Maintaining Fiber
We present a passively mode-locked Erbium-doped fiber laser with tunable parameters including central wavelength, 3-dB bandwidth, and pulse duration. The mode-locking mechanism of the laser is realized by using single-walled carbon nanotubes (SWCNTs) polyvinyl alcohol composite film as a saturable a...
Saved in:
Published in: | Journal of lightwave technology 2019-07, Vol.37 (14), p.3571-3578 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2486-4684c4f5f1372b4c6e19d88ce2ffa9aeab73d761e38b2655f5c46d7120b311333 |
---|---|
cites | cdi_FETCH-LOGICAL-c2486-4684c4f5f1372b4c6e19d88ce2ffa9aeab73d761e38b2655f5c46d7120b311333 |
container_end_page | 3578 |
container_issue | 14 |
container_start_page | 3571 |
container_title | Journal of lightwave technology |
container_volume | 37 |
creator | Bingbing Lu Chuanhang Zou Qianqian Huang Zhijun Yan Zhikun Xing Al Araimi, Mohammed Rozhin, Aleksey Kaiming Zhou Lin Zhang Chengbo Mou |
description | We present a passively mode-locked Erbium-doped fiber laser with tunable parameters including central wavelength, 3-dB bandwidth, and pulse duration. The mode-locking mechanism of the laser is realized by using single-walled carbon nanotubes (SWCNTs) polyvinyl alcohol composite film as a saturable absorber. The tunable operation is implemented via a fiber birefringence filter consisting of a polarization maintaining (PM) fiber and a Brewster fiber grating. The laser achieves a maximum spectral tuning range of 36 nm with 8-cm PM fiber. The maximum spectral width variation of 5.19 nm is acquired when the PM fiber is 12 cm. Simultaneously, the spectral widths of pulses at different central wavelengths are also adjustable. Furthermore, the total cavity length is 8.28 m, which is the shortest cavity length to obtain such wide tuning range in an Erbium-doped fiber laser based on SWCNTs. |
doi_str_mv | 10.1109/JLT.2019.2918016 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8718562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8718562</ieee_id><sourcerecordid>2255866511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2486-4684c4f5f1372b4c6e19d88ce2ffa9aeab73d761e38b2655f5c46d7120b311333</originalsourceid><addsrcrecordid>eNo9kM1Kw0AQgBdRsFbvgpcFz6k7-5fNUYutSooeIj2GTTKpqTGpm1SoT-Uz-GRubelhZmDmmxn4CLkENgJg0c1TnIw4g2jEIzAM9BEZgFIm4BzEMRmwUIjAhFyekrOuWzIGUppwQDbzqsB6Q-f2C2tsFv1bkKwbm9VIZ22BQdzm71jQSZWho7HtfL7zuaBtQy2V6vcnSKq6PyBTZ_uqWVDbFPSlra2rvn3DwzNbNb2P7fAfPScnpa07vNjXIXmd3CfjhyB-nj6Ob-Mg59LoQGojc1mqEkTIM5lrhKgwJkdeljayaLNQFKEGFCbjWqlS5VIXIXCWCQAhxJBc7-6uXPu5xq5Pl-3aNf5lyrk3pLXy3JCwHZW7tusclunKVR_WbVJg6VZw6gWnW8HpXrBfudqtVIh4wE0IRmku_gAknnar</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2255866511</pqid></control><display><type>article</type><title>Widely Wavelength-Tunable Mode-Locked Fiber Laser Based on a 45°-Tilted Fiber Grating and Polarization Maintaining Fiber</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Bingbing Lu ; Chuanhang Zou ; Qianqian Huang ; Zhijun Yan ; Zhikun Xing ; Al Araimi, Mohammed ; Rozhin, Aleksey ; Kaiming Zhou ; Lin Zhang ; Chengbo Mou</creator><creatorcontrib>Bingbing Lu ; Chuanhang Zou ; Qianqian Huang ; Zhijun Yan ; Zhikun Xing ; Al Araimi, Mohammed ; Rozhin, Aleksey ; Kaiming Zhou ; Lin Zhang ; Chengbo Mou</creatorcontrib><description>We present a passively mode-locked Erbium-doped fiber laser with tunable parameters including central wavelength, 3-dB bandwidth, and pulse duration. The mode-locking mechanism of the laser is realized by using single-walled carbon nanotubes (SWCNTs) polyvinyl alcohol composite film as a saturable absorber. The tunable operation is implemented via a fiber birefringence filter consisting of a polarization maintaining (PM) fiber and a Brewster fiber grating. The laser achieves a maximum spectral tuning range of 36 nm with 8-cm PM fiber. The maximum spectral width variation of 5.19 nm is acquired when the PM fiber is 12 cm. Simultaneously, the spectral widths of pulses at different central wavelengths are also adjustable. Furthermore, the total cavity length is 8.28 m, which is the shortest cavity length to obtain such wide tuning range in an Erbium-doped fiber laser based on SWCNTs.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2019.2918016</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Birefringence ; Chemical industry ; Doped fibers ; Erbium ; Erbium-doped fiber lasers ; Fiber lasers ; Laser applications ; Laser mode locking ; Laser tuning ; Lasers ; Locking ; Optical fiber communication ; Optical fiber devices ; Optical fiber dispersion ; Optical fiber polarization ; Passively mode-locked fiber laser ; Polarization ; Polyvinyl alcohol ; Pulse duration ; pulse width ; Single wall carbon nanotubes ; Spectra ; spectral width ; tilted fiber grating ; Tunable lasers ; Tuning ; wavelength-tunable</subject><ispartof>Journal of lightwave technology, 2019-07, Vol.37 (14), p.3571-3578</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2486-4684c4f5f1372b4c6e19d88ce2ffa9aeab73d761e38b2655f5c46d7120b311333</citedby><cites>FETCH-LOGICAL-c2486-4684c4f5f1372b4c6e19d88ce2ffa9aeab73d761e38b2655f5c46d7120b311333</cites><orcidid>0000-0001-6107-3439 ; 0000-0002-4697-2214 ; 0000-0002-3506-7446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8718562$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Bingbing Lu</creatorcontrib><creatorcontrib>Chuanhang Zou</creatorcontrib><creatorcontrib>Qianqian Huang</creatorcontrib><creatorcontrib>Zhijun Yan</creatorcontrib><creatorcontrib>Zhikun Xing</creatorcontrib><creatorcontrib>Al Araimi, Mohammed</creatorcontrib><creatorcontrib>Rozhin, Aleksey</creatorcontrib><creatorcontrib>Kaiming Zhou</creatorcontrib><creatorcontrib>Lin Zhang</creatorcontrib><creatorcontrib>Chengbo Mou</creatorcontrib><title>Widely Wavelength-Tunable Mode-Locked Fiber Laser Based on a 45°-Tilted Fiber Grating and Polarization Maintaining Fiber</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>We present a passively mode-locked Erbium-doped fiber laser with tunable parameters including central wavelength, 3-dB bandwidth, and pulse duration. The mode-locking mechanism of the laser is realized by using single-walled carbon nanotubes (SWCNTs) polyvinyl alcohol composite film as a saturable absorber. The tunable operation is implemented via a fiber birefringence filter consisting of a polarization maintaining (PM) fiber and a Brewster fiber grating. The laser achieves a maximum spectral tuning range of 36 nm with 8-cm PM fiber. The maximum spectral width variation of 5.19 nm is acquired when the PM fiber is 12 cm. Simultaneously, the spectral widths of pulses at different central wavelengths are also adjustable. Furthermore, the total cavity length is 8.28 m, which is the shortest cavity length to obtain such wide tuning range in an Erbium-doped fiber laser based on SWCNTs.</description><subject>Birefringence</subject><subject>Chemical industry</subject><subject>Doped fibers</subject><subject>Erbium</subject><subject>Erbium-doped fiber lasers</subject><subject>Fiber lasers</subject><subject>Laser applications</subject><subject>Laser mode locking</subject><subject>Laser tuning</subject><subject>Lasers</subject><subject>Locking</subject><subject>Optical fiber communication</subject><subject>Optical fiber devices</subject><subject>Optical fiber dispersion</subject><subject>Optical fiber polarization</subject><subject>Passively mode-locked fiber laser</subject><subject>Polarization</subject><subject>Polyvinyl alcohol</subject><subject>Pulse duration</subject><subject>pulse width</subject><subject>Single wall carbon nanotubes</subject><subject>Spectra</subject><subject>spectral width</subject><subject>tilted fiber grating</subject><subject>Tunable lasers</subject><subject>Tuning</subject><subject>wavelength-tunable</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Kw0AQgBdRsFbvgpcFz6k7-5fNUYutSooeIj2GTTKpqTGpm1SoT-Uz-GRubelhZmDmmxn4CLkENgJg0c1TnIw4g2jEIzAM9BEZgFIm4BzEMRmwUIjAhFyekrOuWzIGUppwQDbzqsB6Q-f2C2tsFv1bkKwbm9VIZ22BQdzm71jQSZWho7HtfL7zuaBtQy2V6vcnSKq6PyBTZ_uqWVDbFPSlra2rvn3DwzNbNb2P7fAfPScnpa07vNjXIXmd3CfjhyB-nj6Ob-Mg59LoQGojc1mqEkTIM5lrhKgwJkdeljayaLNQFKEGFCbjWqlS5VIXIXCWCQAhxJBc7-6uXPu5xq5Pl-3aNf5lyrk3pLXy3JCwHZW7tusclunKVR_WbVJg6VZw6gWnW8HpXrBfudqtVIh4wE0IRmku_gAknnar</recordid><startdate>20190715</startdate><enddate>20190715</enddate><creator>Bingbing Lu</creator><creator>Chuanhang Zou</creator><creator>Qianqian Huang</creator><creator>Zhijun Yan</creator><creator>Zhikun Xing</creator><creator>Al Araimi, Mohammed</creator><creator>Rozhin, Aleksey</creator><creator>Kaiming Zhou</creator><creator>Lin Zhang</creator><creator>Chengbo Mou</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6107-3439</orcidid><orcidid>https://orcid.org/0000-0002-4697-2214</orcidid><orcidid>https://orcid.org/0000-0002-3506-7446</orcidid></search><sort><creationdate>20190715</creationdate><title>Widely Wavelength-Tunable Mode-Locked Fiber Laser Based on a 45°-Tilted Fiber Grating and Polarization Maintaining Fiber</title><author>Bingbing Lu ; Chuanhang Zou ; Qianqian Huang ; Zhijun Yan ; Zhikun Xing ; Al Araimi, Mohammed ; Rozhin, Aleksey ; Kaiming Zhou ; Lin Zhang ; Chengbo Mou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2486-4684c4f5f1372b4c6e19d88ce2ffa9aeab73d761e38b2655f5c46d7120b311333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Birefringence</topic><topic>Chemical industry</topic><topic>Doped fibers</topic><topic>Erbium</topic><topic>Erbium-doped fiber lasers</topic><topic>Fiber lasers</topic><topic>Laser applications</topic><topic>Laser mode locking</topic><topic>Laser tuning</topic><topic>Lasers</topic><topic>Locking</topic><topic>Optical fiber communication</topic><topic>Optical fiber devices</topic><topic>Optical fiber dispersion</topic><topic>Optical fiber polarization</topic><topic>Passively mode-locked fiber laser</topic><topic>Polarization</topic><topic>Polyvinyl alcohol</topic><topic>Pulse duration</topic><topic>pulse width</topic><topic>Single wall carbon nanotubes</topic><topic>Spectra</topic><topic>spectral width</topic><topic>tilted fiber grating</topic><topic>Tunable lasers</topic><topic>Tuning</topic><topic>wavelength-tunable</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bingbing Lu</creatorcontrib><creatorcontrib>Chuanhang Zou</creatorcontrib><creatorcontrib>Qianqian Huang</creatorcontrib><creatorcontrib>Zhijun Yan</creatorcontrib><creatorcontrib>Zhikun Xing</creatorcontrib><creatorcontrib>Al Araimi, Mohammed</creatorcontrib><creatorcontrib>Rozhin, Aleksey</creatorcontrib><creatorcontrib>Kaiming Zhou</creatorcontrib><creatorcontrib>Lin Zhang</creatorcontrib><creatorcontrib>Chengbo Mou</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bingbing Lu</au><au>Chuanhang Zou</au><au>Qianqian Huang</au><au>Zhijun Yan</au><au>Zhikun Xing</au><au>Al Araimi, Mohammed</au><au>Rozhin, Aleksey</au><au>Kaiming Zhou</au><au>Lin Zhang</au><au>Chengbo Mou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Widely Wavelength-Tunable Mode-Locked Fiber Laser Based on a 45°-Tilted Fiber Grating and Polarization Maintaining Fiber</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2019-07-15</date><risdate>2019</risdate><volume>37</volume><issue>14</issue><spage>3571</spage><epage>3578</epage><pages>3571-3578</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>We present a passively mode-locked Erbium-doped fiber laser with tunable parameters including central wavelength, 3-dB bandwidth, and pulse duration. The mode-locking mechanism of the laser is realized by using single-walled carbon nanotubes (SWCNTs) polyvinyl alcohol composite film as a saturable absorber. The tunable operation is implemented via a fiber birefringence filter consisting of a polarization maintaining (PM) fiber and a Brewster fiber grating. The laser achieves a maximum spectral tuning range of 36 nm with 8-cm PM fiber. The maximum spectral width variation of 5.19 nm is acquired when the PM fiber is 12 cm. Simultaneously, the spectral widths of pulses at different central wavelengths are also adjustable. Furthermore, the total cavity length is 8.28 m, which is the shortest cavity length to obtain such wide tuning range in an Erbium-doped fiber laser based on SWCNTs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2019.2918016</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6107-3439</orcidid><orcidid>https://orcid.org/0000-0002-4697-2214</orcidid><orcidid>https://orcid.org/0000-0002-3506-7446</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2019-07, Vol.37 (14), p.3571-3578 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_ieee_primary_8718562 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Birefringence Chemical industry Doped fibers Erbium Erbium-doped fiber lasers Fiber lasers Laser applications Laser mode locking Laser tuning Lasers Locking Optical fiber communication Optical fiber devices Optical fiber dispersion Optical fiber polarization Passively mode-locked fiber laser Polarization Polyvinyl alcohol Pulse duration pulse width Single wall carbon nanotubes Spectra spectral width tilted fiber grating Tunable lasers Tuning wavelength-tunable |
title | Widely Wavelength-Tunable Mode-Locked Fiber Laser Based on a 45°-Tilted Fiber Grating and Polarization Maintaining Fiber |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A45%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Widely%20Wavelength-Tunable%20Mode-Locked%20Fiber%20Laser%20Based%20on%20a%2045%C2%B0-Tilted%20Fiber%20Grating%20and%20Polarization%20Maintaining%20Fiber&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Bingbing%20Lu&rft.date=2019-07-15&rft.volume=37&rft.issue=14&rft.spage=3571&rft.epage=3578&rft.pages=3571-3578&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2019.2918016&rft_dat=%3Cproquest_ieee_%3E2255866511%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2486-4684c4f5f1372b4c6e19d88ce2ffa9aeab73d761e38b2655f5c46d7120b311333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2255866511&rft_id=info:pmid/&rft_ieee_id=8718562&rfr_iscdi=true |