Loading…
A Flexible Subcarrier Multiplexing System With Analog Transport and Digital Processing for 5G (and Beyond) Fronthaul
A flexible subcarrier multiplexing system combining analog transport with digital domain processing is presented. By making use of bandpass sampling and applying a systematic mapping of signals into available Nyquist zones, the multiplexing system is able to present multiple signals at the same inte...
Saved in:
Published in: | Journal of lightwave technology 2019-07, Vol.37 (14), p.3689-3700 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A flexible subcarrier multiplexing system combining analog transport with digital domain processing is presented. By making use of bandpass sampling and applying a systematic mapping of signals into available Nyquist zones, the multiplexing system is able to present multiple signals at the same intermediate frequency at the remote site. This simplifies the processing required for multiple antenna systems. We further propose the use of track-and-hold amplifiers at the remote site. These elements are used to extend the mapping to a mapping hierarchy, offering flexibility in frequency placement of signals and relaxation of analog-to-digital converter bandwidth and sampling rate constraints. The system allows the transport of different numerologies in a number of next generation radio access network scenarios. Experimental results for large signal multiplexes with both generic and 5th-generation mobile numerologies show error-vector magnitude performance well within specifications, validating the proposed system. Simulation results from a system model matched to these experimental results provide performance predictions for larger signal multiplexes and larger bandwidths. |
---|---|
ISSN: | 0733-8724 1558-2213 |
DOI: | 10.1109/JLT.2019.2918215 |