Loading…

A mm-Sized Free-Floating Wirelessly Powered Implantable Optical Stimulation Device

This paper presents a mm-sized, free-floating, wirelessly powered, implantable optical stimulation (FF-WIOS) device for untethered optogenetic neuromodulation. A resonator-based three-coil inductive link creates a homogeneous magnetic field that continuously delivers sufficient power (>2.7 mW) at...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical circuits and systems 2019-08, Vol.13 (4), p.608-618
Main Authors: Jia, Yaoyao, Mirbozorgi, S. Abdollah, Lee, Byunghun, Khan, Wasif, Madi, Fatma, Inan, Omer T., Weber, Arthur, Li, Wen, Ghovanloo, Maysam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c450t-3ab994219605a6ff11c58ed5b9b058acfe29608b6e41a792155d9d4209ba4ff53
cites cdi_FETCH-LOGICAL-c450t-3ab994219605a6ff11c58ed5b9b058acfe29608b6e41a792155d9d4209ba4ff53
container_end_page 618
container_issue 4
container_start_page 608
container_title IEEE transactions on biomedical circuits and systems
container_volume 13
creator Jia, Yaoyao
Mirbozorgi, S. Abdollah
Lee, Byunghun
Khan, Wasif
Madi, Fatma
Inan, Omer T.
Weber, Arthur
Li, Wen
Ghovanloo, Maysam
description This paper presents a mm-sized, free-floating, wirelessly powered, implantable optical stimulation (FF-WIOS) device for untethered optogenetic neuromodulation. A resonator-based three-coil inductive link creates a homogeneous magnetic field that continuously delivers sufficient power (>2.7 mW) at an optimal carrier frequency of 60 MHz to the FF-WIOS in the near field without surpassing the specific absorption rate limit, regardless of the position of the FF-WIOS in a large brain area. Forward data telemetry carries stimulation parameters by on-off-keying the power carrier at a data rate of 50 kb/s to selectively activate a 4 × 4 μLED array. Load-shift-keying back telemetry controls the wireless power transmission by reporting the FF-WIOS received power level in a closed-loop power control mechanism. LEDs typically require high instantaneous power to emit sufficient light for optical stimulation. Thus, a switched-capacitor-based stimulation architecture is used as an energy storage buffer with one off-chip capacitor to receive charge directly from the inductive link and deliver it to the selected μLED at the onset of stimulation. The FF-WIOS system-on-a-chip prototype, fabricated in a 0.35-μm standard CMOS process, charges a 10-μF capacitor up to 5 V with 37% efficiency and passes instantaneous current spikes up to 10 mA in the selected μLED, creating a bright exponentially decaying flash with minimal wasted power. An in vivo experiment was conducted to verify the efficacy of the FF-WIOS by observing light-evoked local field potentials and immunostained tissue response from the primary visual cortex (V1) of two anesthetized rats.
doi_str_mv 10.1109/TBCAS.2019.2918761
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8721104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8721104</ieee_id><sourcerecordid>2267549868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-3ab994219605a6ff11c58ed5b9b058acfe29608b6e41a792155d9d4209ba4ff53</originalsourceid><addsrcrecordid>eNpdkV9rFDEUxYMotla_gIIM-OLLrLn5N5MXYV1dLRQqbsXHkJm5U1Myk20yU6mf3qy7LupTAud3DvdwCHkOdAFA9Zurd6vlZsEo6AXTUFcKHpBT0IKWWmv6cPfnrBRSyBPyJKUbSqVimj0mJxyAS17BKfmyLIah3Lif2BXriFiufbCTG6-Lby6ix5T8ffE5_MCYgfNh6-042cZjcbmdXGt9sZncMPtsCWPxHu9ci0_Jo976hM8O7xn5uv5wtfpUXlx-PF8tL8pWSDqV3DZaCwZaUWlV3wO0ssZONrqhsrZtjyxLdaNQgK00Ayk73QlGdWNF30t-Rt7uc7dzM2DX4jhF6802usHGexOsM_8qo_tursOdURWtuOI54PUhIIbbGdNkBpda9LkjhjkZxjgDRisGGX31H3oT5jjmeplSlRS6VnWm2J5qY0gpYn88BqjZTWZ-T2Z2k5nDZNn08u8aR8ufjTLwYg84RDzKdT4LqOC_AGiNmsM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267549868</pqid></control><display><type>article</type><title>A mm-Sized Free-Floating Wirelessly Powered Implantable Optical Stimulation Device</title><source>IEEE Xplore (Online service)</source><creator>Jia, Yaoyao ; Mirbozorgi, S. Abdollah ; Lee, Byunghun ; Khan, Wasif ; Madi, Fatma ; Inan, Omer T. ; Weber, Arthur ; Li, Wen ; Ghovanloo, Maysam</creator><creatorcontrib>Jia, Yaoyao ; Mirbozorgi, S. Abdollah ; Lee, Byunghun ; Khan, Wasif ; Madi, Fatma ; Inan, Omer T. ; Weber, Arthur ; Li, Wen ; Ghovanloo, Maysam</creatorcontrib><description>This paper presents a mm-sized, free-floating, wirelessly powered, implantable optical stimulation (FF-WIOS) device for untethered optogenetic neuromodulation. A resonator-based three-coil inductive link creates a homogeneous magnetic field that continuously delivers sufficient power (&gt;2.7 mW) at an optimal carrier frequency of 60 MHz to the FF-WIOS in the near field without surpassing the specific absorption rate limit, regardless of the position of the FF-WIOS in a large brain area. Forward data telemetry carries stimulation parameters by on-off-keying the power carrier at a data rate of 50 kb/s to selectively activate a 4 × 4 μLED array. Load-shift-keying back telemetry controls the wireless power transmission by reporting the FF-WIOS received power level in a closed-loop power control mechanism. LEDs typically require high instantaneous power to emit sufficient light for optical stimulation. Thus, a switched-capacitor-based stimulation architecture is used as an energy storage buffer with one off-chip capacitor to receive charge directly from the inductive link and deliver it to the selected μLED at the onset of stimulation. The FF-WIOS system-on-a-chip prototype, fabricated in a 0.35-μm standard CMOS process, charges a 10-μF capacitor up to 5 V with 37% efficiency and passes instantaneous current spikes up to 10 mA in the selected μLED, creating a bright exponentially decaying flash with minimal wasted power. An in vivo experiment was conducted to verify the efficacy of the FF-WIOS by observing light-evoked local field potentials and immunostained tissue response from the primary visual cortex (V1) of two anesthetized rats.</description><identifier>ISSN: 1932-4545</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2019.2918761</identifier><identifier>PMID: 31135371</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Action Potentials ; Algorithms ; Animals ; Biomedical optical imaging ; Brain ; Capacitors ; Carrier frequencies ; CMOS ; Coils ; Computer Simulation ; Electric Power Supplies ; Electrodes ; Energy storage ; Female ; Floating ; Free-floating ; implantable ; inductive link ; Instantaneous current ; Light effects ; Light emitting diodes ; Magnetic fields ; Microtechnology ; mm-sized ; Models, Theoretical ; Neural prostheses ; Neuromodulation ; On-Off Keying ; Optical Devices ; Optical resonators ; Optical sensors ; optogenetic switched-capacitor based stimulation ; Optogenetics ; Photic Stimulation - instrumentation ; Power control ; Prostheses and Implants ; Proto-Oncogene Proteins c-fos - metabolism ; Rats, Sprague-Dawley ; Sheep ; Stimulated emission ; Stimulation ; Surgical implants ; System on chip ; Telemetry ; Visual cortex ; Wireless power transmission ; Wireless Technology ; μLED array</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2019-08, Vol.13 (4), p.608-618</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-3ab994219605a6ff11c58ed5b9b058acfe29608b6e41a792155d9d4209ba4ff53</citedby><cites>FETCH-LOGICAL-c450t-3ab994219605a6ff11c58ed5b9b058acfe29608b6e41a792155d9d4209ba4ff53</cites><orcidid>0000-0002-4331-8380 ; 0000-0003-2904-1482 ; 0000-0002-7952-1794 ; 0000-0003-3559-063X ; 0000-0002-6862-8561 ; 0000-0001-9502-3704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8721104$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,54775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31135371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, Yaoyao</creatorcontrib><creatorcontrib>Mirbozorgi, S. Abdollah</creatorcontrib><creatorcontrib>Lee, Byunghun</creatorcontrib><creatorcontrib>Khan, Wasif</creatorcontrib><creatorcontrib>Madi, Fatma</creatorcontrib><creatorcontrib>Inan, Omer T.</creatorcontrib><creatorcontrib>Weber, Arthur</creatorcontrib><creatorcontrib>Li, Wen</creatorcontrib><creatorcontrib>Ghovanloo, Maysam</creatorcontrib><title>A mm-Sized Free-Floating Wirelessly Powered Implantable Optical Stimulation Device</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>This paper presents a mm-sized, free-floating, wirelessly powered, implantable optical stimulation (FF-WIOS) device for untethered optogenetic neuromodulation. A resonator-based three-coil inductive link creates a homogeneous magnetic field that continuously delivers sufficient power (&gt;2.7 mW) at an optimal carrier frequency of 60 MHz to the FF-WIOS in the near field without surpassing the specific absorption rate limit, regardless of the position of the FF-WIOS in a large brain area. Forward data telemetry carries stimulation parameters by on-off-keying the power carrier at a data rate of 50 kb/s to selectively activate a 4 × 4 μLED array. Load-shift-keying back telemetry controls the wireless power transmission by reporting the FF-WIOS received power level in a closed-loop power control mechanism. LEDs typically require high instantaneous power to emit sufficient light for optical stimulation. Thus, a switched-capacitor-based stimulation architecture is used as an energy storage buffer with one off-chip capacitor to receive charge directly from the inductive link and deliver it to the selected μLED at the onset of stimulation. The FF-WIOS system-on-a-chip prototype, fabricated in a 0.35-μm standard CMOS process, charges a 10-μF capacitor up to 5 V with 37% efficiency and passes instantaneous current spikes up to 10 mA in the selected μLED, creating a bright exponentially decaying flash with minimal wasted power. An in vivo experiment was conducted to verify the efficacy of the FF-WIOS by observing light-evoked local field potentials and immunostained tissue response from the primary visual cortex (V1) of two anesthetized rats.</description><subject>Action Potentials</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Biomedical optical imaging</subject><subject>Brain</subject><subject>Capacitors</subject><subject>Carrier frequencies</subject><subject>CMOS</subject><subject>Coils</subject><subject>Computer Simulation</subject><subject>Electric Power Supplies</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Female</subject><subject>Floating</subject><subject>Free-floating</subject><subject>implantable</subject><subject>inductive link</subject><subject>Instantaneous current</subject><subject>Light effects</subject><subject>Light emitting diodes</subject><subject>Magnetic fields</subject><subject>Microtechnology</subject><subject>mm-sized</subject><subject>Models, Theoretical</subject><subject>Neural prostheses</subject><subject>Neuromodulation</subject><subject>On-Off Keying</subject><subject>Optical Devices</subject><subject>Optical resonators</subject><subject>Optical sensors</subject><subject>optogenetic switched-capacitor based stimulation</subject><subject>Optogenetics</subject><subject>Photic Stimulation - instrumentation</subject><subject>Power control</subject><subject>Prostheses and Implants</subject><subject>Proto-Oncogene Proteins c-fos - metabolism</subject><subject>Rats, Sprague-Dawley</subject><subject>Sheep</subject><subject>Stimulated emission</subject><subject>Stimulation</subject><subject>Surgical implants</subject><subject>System on chip</subject><subject>Telemetry</subject><subject>Visual cortex</subject><subject>Wireless power transmission</subject><subject>Wireless Technology</subject><subject>μLED array</subject><issn>1932-4545</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkV9rFDEUxYMotla_gIIM-OLLrLn5N5MXYV1dLRQqbsXHkJm5U1Myk20yU6mf3qy7LupTAud3DvdwCHkOdAFA9Zurd6vlZsEo6AXTUFcKHpBT0IKWWmv6cPfnrBRSyBPyJKUbSqVimj0mJxyAS17BKfmyLIah3Lif2BXriFiufbCTG6-Lby6ix5T8ffE5_MCYgfNh6-042cZjcbmdXGt9sZncMPtsCWPxHu9ci0_Jo976hM8O7xn5uv5wtfpUXlx-PF8tL8pWSDqV3DZaCwZaUWlV3wO0ssZONrqhsrZtjyxLdaNQgK00Ayk73QlGdWNF30t-Rt7uc7dzM2DX4jhF6802usHGexOsM_8qo_tursOdURWtuOI54PUhIIbbGdNkBpda9LkjhjkZxjgDRisGGX31H3oT5jjmeplSlRS6VnWm2J5qY0gpYn88BqjZTWZ-T2Z2k5nDZNn08u8aR8ufjTLwYg84RDzKdT4LqOC_AGiNmsM</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Jia, Yaoyao</creator><creator>Mirbozorgi, S. Abdollah</creator><creator>Lee, Byunghun</creator><creator>Khan, Wasif</creator><creator>Madi, Fatma</creator><creator>Inan, Omer T.</creator><creator>Weber, Arthur</creator><creator>Li, Wen</creator><creator>Ghovanloo, Maysam</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4331-8380</orcidid><orcidid>https://orcid.org/0000-0003-2904-1482</orcidid><orcidid>https://orcid.org/0000-0002-7952-1794</orcidid><orcidid>https://orcid.org/0000-0003-3559-063X</orcidid><orcidid>https://orcid.org/0000-0002-6862-8561</orcidid><orcidid>https://orcid.org/0000-0001-9502-3704</orcidid></search><sort><creationdate>20190801</creationdate><title>A mm-Sized Free-Floating Wirelessly Powered Implantable Optical Stimulation Device</title><author>Jia, Yaoyao ; Mirbozorgi, S. Abdollah ; Lee, Byunghun ; Khan, Wasif ; Madi, Fatma ; Inan, Omer T. ; Weber, Arthur ; Li, Wen ; Ghovanloo, Maysam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-3ab994219605a6ff11c58ed5b9b058acfe29608b6e41a792155d9d4209ba4ff53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Action Potentials</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Biomedical optical imaging</topic><topic>Brain</topic><topic>Capacitors</topic><topic>Carrier frequencies</topic><topic>CMOS</topic><topic>Coils</topic><topic>Computer Simulation</topic><topic>Electric Power Supplies</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Female</topic><topic>Floating</topic><topic>Free-floating</topic><topic>implantable</topic><topic>inductive link</topic><topic>Instantaneous current</topic><topic>Light effects</topic><topic>Light emitting diodes</topic><topic>Magnetic fields</topic><topic>Microtechnology</topic><topic>mm-sized</topic><topic>Models, Theoretical</topic><topic>Neural prostheses</topic><topic>Neuromodulation</topic><topic>On-Off Keying</topic><topic>Optical Devices</topic><topic>Optical resonators</topic><topic>Optical sensors</topic><topic>optogenetic switched-capacitor based stimulation</topic><topic>Optogenetics</topic><topic>Photic Stimulation - instrumentation</topic><topic>Power control</topic><topic>Prostheses and Implants</topic><topic>Proto-Oncogene Proteins c-fos - metabolism</topic><topic>Rats, Sprague-Dawley</topic><topic>Sheep</topic><topic>Stimulated emission</topic><topic>Stimulation</topic><topic>Surgical implants</topic><topic>System on chip</topic><topic>Telemetry</topic><topic>Visual cortex</topic><topic>Wireless power transmission</topic><topic>Wireless Technology</topic><topic>μLED array</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Yaoyao</creatorcontrib><creatorcontrib>Mirbozorgi, S. Abdollah</creatorcontrib><creatorcontrib>Lee, Byunghun</creatorcontrib><creatorcontrib>Khan, Wasif</creatorcontrib><creatorcontrib>Madi, Fatma</creatorcontrib><creatorcontrib>Inan, Omer T.</creatorcontrib><creatorcontrib>Weber, Arthur</creatorcontrib><creatorcontrib>Li, Wen</creatorcontrib><creatorcontrib>Ghovanloo, Maysam</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Yaoyao</au><au>Mirbozorgi, S. Abdollah</au><au>Lee, Byunghun</au><au>Khan, Wasif</au><au>Madi, Fatma</au><au>Inan, Omer T.</au><au>Weber, Arthur</au><au>Li, Wen</au><au>Ghovanloo, Maysam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mm-Sized Free-Floating Wirelessly Powered Implantable Optical Stimulation Device</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>13</volume><issue>4</issue><spage>608</spage><epage>618</epage><pages>608-618</pages><issn>1932-4545</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>This paper presents a mm-sized, free-floating, wirelessly powered, implantable optical stimulation (FF-WIOS) device for untethered optogenetic neuromodulation. A resonator-based three-coil inductive link creates a homogeneous magnetic field that continuously delivers sufficient power (&gt;2.7 mW) at an optimal carrier frequency of 60 MHz to the FF-WIOS in the near field without surpassing the specific absorption rate limit, regardless of the position of the FF-WIOS in a large brain area. Forward data telemetry carries stimulation parameters by on-off-keying the power carrier at a data rate of 50 kb/s to selectively activate a 4 × 4 μLED array. Load-shift-keying back telemetry controls the wireless power transmission by reporting the FF-WIOS received power level in a closed-loop power control mechanism. LEDs typically require high instantaneous power to emit sufficient light for optical stimulation. Thus, a switched-capacitor-based stimulation architecture is used as an energy storage buffer with one off-chip capacitor to receive charge directly from the inductive link and deliver it to the selected μLED at the onset of stimulation. The FF-WIOS system-on-a-chip prototype, fabricated in a 0.35-μm standard CMOS process, charges a 10-μF capacitor up to 5 V with 37% efficiency and passes instantaneous current spikes up to 10 mA in the selected μLED, creating a bright exponentially decaying flash with minimal wasted power. An in vivo experiment was conducted to verify the efficacy of the FF-WIOS by observing light-evoked local field potentials and immunostained tissue response from the primary visual cortex (V1) of two anesthetized rats.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31135371</pmid><doi>10.1109/TBCAS.2019.2918761</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4331-8380</orcidid><orcidid>https://orcid.org/0000-0003-2904-1482</orcidid><orcidid>https://orcid.org/0000-0002-7952-1794</orcidid><orcidid>https://orcid.org/0000-0003-3559-063X</orcidid><orcidid>https://orcid.org/0000-0002-6862-8561</orcidid><orcidid>https://orcid.org/0000-0001-9502-3704</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-4545
ispartof IEEE transactions on biomedical circuits and systems, 2019-08, Vol.13 (4), p.608-618
issn 1932-4545
1940-9990
language eng
recordid cdi_ieee_primary_8721104
source IEEE Xplore (Online service)
subjects Action Potentials
Algorithms
Animals
Biomedical optical imaging
Brain
Capacitors
Carrier frequencies
CMOS
Coils
Computer Simulation
Electric Power Supplies
Electrodes
Energy storage
Female
Floating
Free-floating
implantable
inductive link
Instantaneous current
Light effects
Light emitting diodes
Magnetic fields
Microtechnology
mm-sized
Models, Theoretical
Neural prostheses
Neuromodulation
On-Off Keying
Optical Devices
Optical resonators
Optical sensors
optogenetic switched-capacitor based stimulation
Optogenetics
Photic Stimulation - instrumentation
Power control
Prostheses and Implants
Proto-Oncogene Proteins c-fos - metabolism
Rats, Sprague-Dawley
Sheep
Stimulated emission
Stimulation
Surgical implants
System on chip
Telemetry
Visual cortex
Wireless power transmission
Wireless Technology
μLED array
title A mm-Sized Free-Floating Wirelessly Powered Implantable Optical Stimulation Device
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A33%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mm-Sized%20Free-Floating%20Wirelessly%20Powered%20Implantable%20Optical%20Stimulation%20Device&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Jia,%20Yaoyao&rft.date=2019-08-01&rft.volume=13&rft.issue=4&rft.spage=608&rft.epage=618&rft.pages=608-618&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2019.2918761&rft_dat=%3Cproquest_ieee_%3E2267549868%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c450t-3ab994219605a6ff11c58ed5b9b058acfe29608b6e41a792155d9d4209ba4ff53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2267549868&rft_id=info:pmid/31135371&rft_ieee_id=8721104&rfr_iscdi=true