Loading…
A mm-Sized Free-Floating Wirelessly Powered Implantable Optical Stimulation Device
This paper presents a mm-sized, free-floating, wirelessly powered, implantable optical stimulation (FF-WIOS) device for untethered optogenetic neuromodulation. A resonator-based three-coil inductive link creates a homogeneous magnetic field that continuously delivers sufficient power (>2.7 mW) at...
Saved in:
Published in: | IEEE transactions on biomedical circuits and systems 2019-08, Vol.13 (4), p.608-618 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c450t-3ab994219605a6ff11c58ed5b9b058acfe29608b6e41a792155d9d4209ba4ff53 |
---|---|
cites | cdi_FETCH-LOGICAL-c450t-3ab994219605a6ff11c58ed5b9b058acfe29608b6e41a792155d9d4209ba4ff53 |
container_end_page | 618 |
container_issue | 4 |
container_start_page | 608 |
container_title | IEEE transactions on biomedical circuits and systems |
container_volume | 13 |
creator | Jia, Yaoyao Mirbozorgi, S. Abdollah Lee, Byunghun Khan, Wasif Madi, Fatma Inan, Omer T. Weber, Arthur Li, Wen Ghovanloo, Maysam |
description | This paper presents a mm-sized, free-floating, wirelessly powered, implantable optical stimulation (FF-WIOS) device for untethered optogenetic neuromodulation. A resonator-based three-coil inductive link creates a homogeneous magnetic field that continuously delivers sufficient power (>2.7 mW) at an optimal carrier frequency of 60 MHz to the FF-WIOS in the near field without surpassing the specific absorption rate limit, regardless of the position of the FF-WIOS in a large brain area. Forward data telemetry carries stimulation parameters by on-off-keying the power carrier at a data rate of 50 kb/s to selectively activate a 4 × 4 μLED array. Load-shift-keying back telemetry controls the wireless power transmission by reporting the FF-WIOS received power level in a closed-loop power control mechanism. LEDs typically require high instantaneous power to emit sufficient light for optical stimulation. Thus, a switched-capacitor-based stimulation architecture is used as an energy storage buffer with one off-chip capacitor to receive charge directly from the inductive link and deliver it to the selected μLED at the onset of stimulation. The FF-WIOS system-on-a-chip prototype, fabricated in a 0.35-μm standard CMOS process, charges a 10-μF capacitor up to 5 V with 37% efficiency and passes instantaneous current spikes up to 10 mA in the selected μLED, creating a bright exponentially decaying flash with minimal wasted power. An in vivo experiment was conducted to verify the efficacy of the FF-WIOS by observing light-evoked local field potentials and immunostained tissue response from the primary visual cortex (V1) of two anesthetized rats. |
doi_str_mv | 10.1109/TBCAS.2019.2918761 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8721104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8721104</ieee_id><sourcerecordid>2267549868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-3ab994219605a6ff11c58ed5b9b058acfe29608b6e41a792155d9d4209ba4ff53</originalsourceid><addsrcrecordid>eNpdkV9rFDEUxYMotla_gIIM-OLLrLn5N5MXYV1dLRQqbsXHkJm5U1Myk20yU6mf3qy7LupTAud3DvdwCHkOdAFA9Zurd6vlZsEo6AXTUFcKHpBT0IKWWmv6cPfnrBRSyBPyJKUbSqVimj0mJxyAS17BKfmyLIah3Lif2BXriFiufbCTG6-Lby6ix5T8ffE5_MCYgfNh6-042cZjcbmdXGt9sZncMPtsCWPxHu9ci0_Jo976hM8O7xn5uv5wtfpUXlx-PF8tL8pWSDqV3DZaCwZaUWlV3wO0ssZONrqhsrZtjyxLdaNQgK00Ayk73QlGdWNF30t-Rt7uc7dzM2DX4jhF6802usHGexOsM_8qo_tursOdURWtuOI54PUhIIbbGdNkBpda9LkjhjkZxjgDRisGGX31H3oT5jjmeplSlRS6VnWm2J5qY0gpYn88BqjZTWZ-T2Z2k5nDZNn08u8aR8ufjTLwYg84RDzKdT4LqOC_AGiNmsM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267549868</pqid></control><display><type>article</type><title>A mm-Sized Free-Floating Wirelessly Powered Implantable Optical Stimulation Device</title><source>IEEE Xplore (Online service)</source><creator>Jia, Yaoyao ; Mirbozorgi, S. Abdollah ; Lee, Byunghun ; Khan, Wasif ; Madi, Fatma ; Inan, Omer T. ; Weber, Arthur ; Li, Wen ; Ghovanloo, Maysam</creator><creatorcontrib>Jia, Yaoyao ; Mirbozorgi, S. Abdollah ; Lee, Byunghun ; Khan, Wasif ; Madi, Fatma ; Inan, Omer T. ; Weber, Arthur ; Li, Wen ; Ghovanloo, Maysam</creatorcontrib><description>This paper presents a mm-sized, free-floating, wirelessly powered, implantable optical stimulation (FF-WIOS) device for untethered optogenetic neuromodulation. A resonator-based three-coil inductive link creates a homogeneous magnetic field that continuously delivers sufficient power (>2.7 mW) at an optimal carrier frequency of 60 MHz to the FF-WIOS in the near field without surpassing the specific absorption rate limit, regardless of the position of the FF-WIOS in a large brain area. Forward data telemetry carries stimulation parameters by on-off-keying the power carrier at a data rate of 50 kb/s to selectively activate a 4 × 4 μLED array. Load-shift-keying back telemetry controls the wireless power transmission by reporting the FF-WIOS received power level in a closed-loop power control mechanism. LEDs typically require high instantaneous power to emit sufficient light for optical stimulation. Thus, a switched-capacitor-based stimulation architecture is used as an energy storage buffer with one off-chip capacitor to receive charge directly from the inductive link and deliver it to the selected μLED at the onset of stimulation. The FF-WIOS system-on-a-chip prototype, fabricated in a 0.35-μm standard CMOS process, charges a 10-μF capacitor up to 5 V with 37% efficiency and passes instantaneous current spikes up to 10 mA in the selected μLED, creating a bright exponentially decaying flash with minimal wasted power. An in vivo experiment was conducted to verify the efficacy of the FF-WIOS by observing light-evoked local field potentials and immunostained tissue response from the primary visual cortex (V1) of two anesthetized rats.</description><identifier>ISSN: 1932-4545</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2019.2918761</identifier><identifier>PMID: 31135371</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Action Potentials ; Algorithms ; Animals ; Biomedical optical imaging ; Brain ; Capacitors ; Carrier frequencies ; CMOS ; Coils ; Computer Simulation ; Electric Power Supplies ; Electrodes ; Energy storage ; Female ; Floating ; Free-floating ; implantable ; inductive link ; Instantaneous current ; Light effects ; Light emitting diodes ; Magnetic fields ; Microtechnology ; mm-sized ; Models, Theoretical ; Neural prostheses ; Neuromodulation ; On-Off Keying ; Optical Devices ; Optical resonators ; Optical sensors ; optogenetic switched-capacitor based stimulation ; Optogenetics ; Photic Stimulation - instrumentation ; Power control ; Prostheses and Implants ; Proto-Oncogene Proteins c-fos - metabolism ; Rats, Sprague-Dawley ; Sheep ; Stimulated emission ; Stimulation ; Surgical implants ; System on chip ; Telemetry ; Visual cortex ; Wireless power transmission ; Wireless Technology ; μLED array</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2019-08, Vol.13 (4), p.608-618</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-3ab994219605a6ff11c58ed5b9b058acfe29608b6e41a792155d9d4209ba4ff53</citedby><cites>FETCH-LOGICAL-c450t-3ab994219605a6ff11c58ed5b9b058acfe29608b6e41a792155d9d4209ba4ff53</cites><orcidid>0000-0002-4331-8380 ; 0000-0003-2904-1482 ; 0000-0002-7952-1794 ; 0000-0003-3559-063X ; 0000-0002-6862-8561 ; 0000-0001-9502-3704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8721104$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,54775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31135371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, Yaoyao</creatorcontrib><creatorcontrib>Mirbozorgi, S. Abdollah</creatorcontrib><creatorcontrib>Lee, Byunghun</creatorcontrib><creatorcontrib>Khan, Wasif</creatorcontrib><creatorcontrib>Madi, Fatma</creatorcontrib><creatorcontrib>Inan, Omer T.</creatorcontrib><creatorcontrib>Weber, Arthur</creatorcontrib><creatorcontrib>Li, Wen</creatorcontrib><creatorcontrib>Ghovanloo, Maysam</creatorcontrib><title>A mm-Sized Free-Floating Wirelessly Powered Implantable Optical Stimulation Device</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>This paper presents a mm-sized, free-floating, wirelessly powered, implantable optical stimulation (FF-WIOS) device for untethered optogenetic neuromodulation. A resonator-based three-coil inductive link creates a homogeneous magnetic field that continuously delivers sufficient power (>2.7 mW) at an optimal carrier frequency of 60 MHz to the FF-WIOS in the near field without surpassing the specific absorption rate limit, regardless of the position of the FF-WIOS in a large brain area. Forward data telemetry carries stimulation parameters by on-off-keying the power carrier at a data rate of 50 kb/s to selectively activate a 4 × 4 μLED array. Load-shift-keying back telemetry controls the wireless power transmission by reporting the FF-WIOS received power level in a closed-loop power control mechanism. LEDs typically require high instantaneous power to emit sufficient light for optical stimulation. Thus, a switched-capacitor-based stimulation architecture is used as an energy storage buffer with one off-chip capacitor to receive charge directly from the inductive link and deliver it to the selected μLED at the onset of stimulation. The FF-WIOS system-on-a-chip prototype, fabricated in a 0.35-μm standard CMOS process, charges a 10-μF capacitor up to 5 V with 37% efficiency and passes instantaneous current spikes up to 10 mA in the selected μLED, creating a bright exponentially decaying flash with minimal wasted power. An in vivo experiment was conducted to verify the efficacy of the FF-WIOS by observing light-evoked local field potentials and immunostained tissue response from the primary visual cortex (V1) of two anesthetized rats.</description><subject>Action Potentials</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Biomedical optical imaging</subject><subject>Brain</subject><subject>Capacitors</subject><subject>Carrier frequencies</subject><subject>CMOS</subject><subject>Coils</subject><subject>Computer Simulation</subject><subject>Electric Power Supplies</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Female</subject><subject>Floating</subject><subject>Free-floating</subject><subject>implantable</subject><subject>inductive link</subject><subject>Instantaneous current</subject><subject>Light effects</subject><subject>Light emitting diodes</subject><subject>Magnetic fields</subject><subject>Microtechnology</subject><subject>mm-sized</subject><subject>Models, Theoretical</subject><subject>Neural prostheses</subject><subject>Neuromodulation</subject><subject>On-Off Keying</subject><subject>Optical Devices</subject><subject>Optical resonators</subject><subject>Optical sensors</subject><subject>optogenetic switched-capacitor based stimulation</subject><subject>Optogenetics</subject><subject>Photic Stimulation - instrumentation</subject><subject>Power control</subject><subject>Prostheses and Implants</subject><subject>Proto-Oncogene Proteins c-fos - metabolism</subject><subject>Rats, Sprague-Dawley</subject><subject>Sheep</subject><subject>Stimulated emission</subject><subject>Stimulation</subject><subject>Surgical implants</subject><subject>System on chip</subject><subject>Telemetry</subject><subject>Visual cortex</subject><subject>Wireless power transmission</subject><subject>Wireless Technology</subject><subject>μLED array</subject><issn>1932-4545</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkV9rFDEUxYMotla_gIIM-OLLrLn5N5MXYV1dLRQqbsXHkJm5U1Myk20yU6mf3qy7LupTAud3DvdwCHkOdAFA9Zurd6vlZsEo6AXTUFcKHpBT0IKWWmv6cPfnrBRSyBPyJKUbSqVimj0mJxyAS17BKfmyLIah3Lif2BXriFiufbCTG6-Lby6ix5T8ffE5_MCYgfNh6-042cZjcbmdXGt9sZncMPtsCWPxHu9ci0_Jo976hM8O7xn5uv5wtfpUXlx-PF8tL8pWSDqV3DZaCwZaUWlV3wO0ssZONrqhsrZtjyxLdaNQgK00Ayk73QlGdWNF30t-Rt7uc7dzM2DX4jhF6802usHGexOsM_8qo_tursOdURWtuOI54PUhIIbbGdNkBpda9LkjhjkZxjgDRisGGX31H3oT5jjmeplSlRS6VnWm2J5qY0gpYn88BqjZTWZ-T2Z2k5nDZNn08u8aR8ufjTLwYg84RDzKdT4LqOC_AGiNmsM</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Jia, Yaoyao</creator><creator>Mirbozorgi, S. Abdollah</creator><creator>Lee, Byunghun</creator><creator>Khan, Wasif</creator><creator>Madi, Fatma</creator><creator>Inan, Omer T.</creator><creator>Weber, Arthur</creator><creator>Li, Wen</creator><creator>Ghovanloo, Maysam</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4331-8380</orcidid><orcidid>https://orcid.org/0000-0003-2904-1482</orcidid><orcidid>https://orcid.org/0000-0002-7952-1794</orcidid><orcidid>https://orcid.org/0000-0003-3559-063X</orcidid><orcidid>https://orcid.org/0000-0002-6862-8561</orcidid><orcidid>https://orcid.org/0000-0001-9502-3704</orcidid></search><sort><creationdate>20190801</creationdate><title>A mm-Sized Free-Floating Wirelessly Powered Implantable Optical Stimulation Device</title><author>Jia, Yaoyao ; Mirbozorgi, S. Abdollah ; Lee, Byunghun ; Khan, Wasif ; Madi, Fatma ; Inan, Omer T. ; Weber, Arthur ; Li, Wen ; Ghovanloo, Maysam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-3ab994219605a6ff11c58ed5b9b058acfe29608b6e41a792155d9d4209ba4ff53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Action Potentials</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Biomedical optical imaging</topic><topic>Brain</topic><topic>Capacitors</topic><topic>Carrier frequencies</topic><topic>CMOS</topic><topic>Coils</topic><topic>Computer Simulation</topic><topic>Electric Power Supplies</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Female</topic><topic>Floating</topic><topic>Free-floating</topic><topic>implantable</topic><topic>inductive link</topic><topic>Instantaneous current</topic><topic>Light effects</topic><topic>Light emitting diodes</topic><topic>Magnetic fields</topic><topic>Microtechnology</topic><topic>mm-sized</topic><topic>Models, Theoretical</topic><topic>Neural prostheses</topic><topic>Neuromodulation</topic><topic>On-Off Keying</topic><topic>Optical Devices</topic><topic>Optical resonators</topic><topic>Optical sensors</topic><topic>optogenetic switched-capacitor based stimulation</topic><topic>Optogenetics</topic><topic>Photic Stimulation - instrumentation</topic><topic>Power control</topic><topic>Prostheses and Implants</topic><topic>Proto-Oncogene Proteins c-fos - metabolism</topic><topic>Rats, Sprague-Dawley</topic><topic>Sheep</topic><topic>Stimulated emission</topic><topic>Stimulation</topic><topic>Surgical implants</topic><topic>System on chip</topic><topic>Telemetry</topic><topic>Visual cortex</topic><topic>Wireless power transmission</topic><topic>Wireless Technology</topic><topic>μLED array</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Yaoyao</creatorcontrib><creatorcontrib>Mirbozorgi, S. Abdollah</creatorcontrib><creatorcontrib>Lee, Byunghun</creatorcontrib><creatorcontrib>Khan, Wasif</creatorcontrib><creatorcontrib>Madi, Fatma</creatorcontrib><creatorcontrib>Inan, Omer T.</creatorcontrib><creatorcontrib>Weber, Arthur</creatorcontrib><creatorcontrib>Li, Wen</creatorcontrib><creatorcontrib>Ghovanloo, Maysam</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Yaoyao</au><au>Mirbozorgi, S. Abdollah</au><au>Lee, Byunghun</au><au>Khan, Wasif</au><au>Madi, Fatma</au><au>Inan, Omer T.</au><au>Weber, Arthur</au><au>Li, Wen</au><au>Ghovanloo, Maysam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mm-Sized Free-Floating Wirelessly Powered Implantable Optical Stimulation Device</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>13</volume><issue>4</issue><spage>608</spage><epage>618</epage><pages>608-618</pages><issn>1932-4545</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>This paper presents a mm-sized, free-floating, wirelessly powered, implantable optical stimulation (FF-WIOS) device for untethered optogenetic neuromodulation. A resonator-based three-coil inductive link creates a homogeneous magnetic field that continuously delivers sufficient power (>2.7 mW) at an optimal carrier frequency of 60 MHz to the FF-WIOS in the near field without surpassing the specific absorption rate limit, regardless of the position of the FF-WIOS in a large brain area. Forward data telemetry carries stimulation parameters by on-off-keying the power carrier at a data rate of 50 kb/s to selectively activate a 4 × 4 μLED array. Load-shift-keying back telemetry controls the wireless power transmission by reporting the FF-WIOS received power level in a closed-loop power control mechanism. LEDs typically require high instantaneous power to emit sufficient light for optical stimulation. Thus, a switched-capacitor-based stimulation architecture is used as an energy storage buffer with one off-chip capacitor to receive charge directly from the inductive link and deliver it to the selected μLED at the onset of stimulation. The FF-WIOS system-on-a-chip prototype, fabricated in a 0.35-μm standard CMOS process, charges a 10-μF capacitor up to 5 V with 37% efficiency and passes instantaneous current spikes up to 10 mA in the selected μLED, creating a bright exponentially decaying flash with minimal wasted power. An in vivo experiment was conducted to verify the efficacy of the FF-WIOS by observing light-evoked local field potentials and immunostained tissue response from the primary visual cortex (V1) of two anesthetized rats.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31135371</pmid><doi>10.1109/TBCAS.2019.2918761</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4331-8380</orcidid><orcidid>https://orcid.org/0000-0003-2904-1482</orcidid><orcidid>https://orcid.org/0000-0002-7952-1794</orcidid><orcidid>https://orcid.org/0000-0003-3559-063X</orcidid><orcidid>https://orcid.org/0000-0002-6862-8561</orcidid><orcidid>https://orcid.org/0000-0001-9502-3704</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-4545 |
ispartof | IEEE transactions on biomedical circuits and systems, 2019-08, Vol.13 (4), p.608-618 |
issn | 1932-4545 1940-9990 |
language | eng |
recordid | cdi_ieee_primary_8721104 |
source | IEEE Xplore (Online service) |
subjects | Action Potentials Algorithms Animals Biomedical optical imaging Brain Capacitors Carrier frequencies CMOS Coils Computer Simulation Electric Power Supplies Electrodes Energy storage Female Floating Free-floating implantable inductive link Instantaneous current Light effects Light emitting diodes Magnetic fields Microtechnology mm-sized Models, Theoretical Neural prostheses Neuromodulation On-Off Keying Optical Devices Optical resonators Optical sensors optogenetic switched-capacitor based stimulation Optogenetics Photic Stimulation - instrumentation Power control Prostheses and Implants Proto-Oncogene Proteins c-fos - metabolism Rats, Sprague-Dawley Sheep Stimulated emission Stimulation Surgical implants System on chip Telemetry Visual cortex Wireless power transmission Wireless Technology μLED array |
title | A mm-Sized Free-Floating Wirelessly Powered Implantable Optical Stimulation Device |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A33%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mm-Sized%20Free-Floating%20Wirelessly%20Powered%20Implantable%20Optical%20Stimulation%20Device&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Jia,%20Yaoyao&rft.date=2019-08-01&rft.volume=13&rft.issue=4&rft.spage=608&rft.epage=618&rft.pages=608-618&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2019.2918761&rft_dat=%3Cproquest_ieee_%3E2267549868%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c450t-3ab994219605a6ff11c58ed5b9b058acfe29608b6e41a792155d9d4209ba4ff53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2267549868&rft_id=info:pmid/31135371&rft_ieee_id=8721104&rfr_iscdi=true |