Loading…
Sequential Parallel Switching for Drain-Source Synchronous Rectifier Efficiency and Light-Load Stability Improvement
Drain-source synchronous rectification (SR) is a technique used to reduce the secondary-side conduction loss of an LLC resonant converter. In drain-source sensed SR, an early turn off issue can be observed due to parasitics in the drain-source voltage sensing loop. In LLC converter rectifiers where...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 467 |
container_issue | |
container_start_page | 463 |
container_title | |
container_volume | |
creator | Yu, Oscar Yeh, Chih-Shen Lai, Jih-Sheng |
description | Drain-source synchronous rectification (SR) is a technique used to reduce the secondary-side conduction loss of an LLC resonant converter. In drain-source sensed SR, an early turn off issue can be observed due to parasitics in the drain-source voltage sensing loop. In LLC converter rectifiers where multiple SR switches are paralleled, sequential parallel switching (SPS) can be implemented to sequentially turn off the SR FETs to reduce the effect of these parasitics. By turning off SR FETs one by one over batch turn-off, the drain-source voltage signal near the turn-off moment can be enhanced, mitigating the effects of parasitics and the subsequent early turn-off issue. This method also reduces the amount of turn-off jitter experienced with low on-resistance (R DS,on ) FETs, which can start a detrimental resonance at light load conditions. Since the SR conduction time is prolonged, SPS can decrease body-diode/anti-parallel-diode conduction loss in the rectifier. This results in a net increase in converter efficiency, despite a slight increase in the SR FET's channel conduction loss. The concept and operation of SPS is proposed, explained, and simulated in this paper. Finally, SPS is implemented and verified at light load on a LLC resonant converter with paralleled GaN SR FETs. |
doi_str_mv | 10.1109/APEC.2019.8722283 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8722283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8722283</ieee_id><sourcerecordid>8722283</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-74492b5e98c416e1df0c1f4f4b93b7a45a473e819aa8636eddc361a6e222c9253</originalsourceid><addsrcrecordid>eNotkFtLwzAYQKMgOOd-gPiSP9CZW3N5HHNeoOCw-jzS9MsW6dKZZkr_vQP3dN7OgYPQHSVzSol5WKxXyzkj1My1YoxpfoFmRmlaci0158RcogkTihRSCnWNbobhixDGFZUTlGv4PkLMwXZ4bZPtOuhw_Ruy24W4xb5P-DHZEIu6PyYHuB6j26U-9scBv4PLwQdIeOV9cAGiG7GNLa7CdpeLqrctrrNtQhfyiF_3h9T_wP4Uu0VX3nYDzM6cos-n1cfypajenl-Xi6oIVJW5UEIY1pRgtBNUAm09cdQLLxrDG2VFaYXioKmxVksuoW0dl9RKOE1whpV8iu7_vQEANocU9jaNm_Mk_gfFcl0J</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sequential Parallel Switching for Drain-Source Synchronous Rectifier Efficiency and Light-Load Stability Improvement</title><source>IEEE Xplore All Conference Series</source><creator>Yu, Oscar ; Yeh, Chih-Shen ; Lai, Jih-Sheng</creator><creatorcontrib>Yu, Oscar ; Yeh, Chih-Shen ; Lai, Jih-Sheng</creatorcontrib><description>Drain-source synchronous rectification (SR) is a technique used to reduce the secondary-side conduction loss of an LLC resonant converter. In drain-source sensed SR, an early turn off issue can be observed due to parasitics in the drain-source voltage sensing loop. In LLC converter rectifiers where multiple SR switches are paralleled, sequential parallel switching (SPS) can be implemented to sequentially turn off the SR FETs to reduce the effect of these parasitics. By turning off SR FETs one by one over batch turn-off, the drain-source voltage signal near the turn-off moment can be enhanced, mitigating the effects of parasitics and the subsequent early turn-off issue. This method also reduces the amount of turn-off jitter experienced with low on-resistance (R DS,on ) FETs, which can start a detrimental resonance at light load conditions. Since the SR conduction time is prolonged, SPS can decrease body-diode/anti-parallel-diode conduction loss in the rectifier. This results in a net increase in converter efficiency, despite a slight increase in the SR FET's channel conduction loss. The concept and operation of SPS is proposed, explained, and simulated in this paper. Finally, SPS is implemented and verified at light load on a LLC resonant converter with paralleled GaN SR FETs.</description><identifier>EISSN: 2470-6647</identifier><identifier>EISBN: 9781538683309</identifier><identifier>EISBN: 153868330X</identifier><identifier>DOI: 10.1109/APEC.2019.8722283</identifier><language>eng</language><publisher>IEEE</publisher><subject>Field effect transistors ; Gallium nitride ; Inductance ; light load stability ; llc converter ; power electronics ; Rectifiers ; solid state transformer ; Stability analysis ; Switches ; synchronous rectifier ; Testing</subject><ispartof>2019 IEEE Applied Power Electronics Conference and Exposition (APEC), 2019, p.463-467</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8722283$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8722283$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yu, Oscar</creatorcontrib><creatorcontrib>Yeh, Chih-Shen</creatorcontrib><creatorcontrib>Lai, Jih-Sheng</creatorcontrib><title>Sequential Parallel Switching for Drain-Source Synchronous Rectifier Efficiency and Light-Load Stability Improvement</title><title>2019 IEEE Applied Power Electronics Conference and Exposition (APEC)</title><addtitle>APEC</addtitle><description>Drain-source synchronous rectification (SR) is a technique used to reduce the secondary-side conduction loss of an LLC resonant converter. In drain-source sensed SR, an early turn off issue can be observed due to parasitics in the drain-source voltage sensing loop. In LLC converter rectifiers where multiple SR switches are paralleled, sequential parallel switching (SPS) can be implemented to sequentially turn off the SR FETs to reduce the effect of these parasitics. By turning off SR FETs one by one over batch turn-off, the drain-source voltage signal near the turn-off moment can be enhanced, mitigating the effects of parasitics and the subsequent early turn-off issue. This method also reduces the amount of turn-off jitter experienced with low on-resistance (R DS,on ) FETs, which can start a detrimental resonance at light load conditions. Since the SR conduction time is prolonged, SPS can decrease body-diode/anti-parallel-diode conduction loss in the rectifier. This results in a net increase in converter efficiency, despite a slight increase in the SR FET's channel conduction loss. The concept and operation of SPS is proposed, explained, and simulated in this paper. Finally, SPS is implemented and verified at light load on a LLC resonant converter with paralleled GaN SR FETs.</description><subject>Field effect transistors</subject><subject>Gallium nitride</subject><subject>Inductance</subject><subject>light load stability</subject><subject>llc converter</subject><subject>power electronics</subject><subject>Rectifiers</subject><subject>solid state transformer</subject><subject>Stability analysis</subject><subject>Switches</subject><subject>synchronous rectifier</subject><subject>Testing</subject><issn>2470-6647</issn><isbn>9781538683309</isbn><isbn>153868330X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkFtLwzAYQKMgOOd-gPiSP9CZW3N5HHNeoOCw-jzS9MsW6dKZZkr_vQP3dN7OgYPQHSVzSol5WKxXyzkj1My1YoxpfoFmRmlaci0158RcogkTihRSCnWNbobhixDGFZUTlGv4PkLMwXZ4bZPtOuhw_Ruy24W4xb5P-DHZEIu6PyYHuB6j26U-9scBv4PLwQdIeOV9cAGiG7GNLa7CdpeLqrctrrNtQhfyiF_3h9T_wP4Uu0VX3nYDzM6cos-n1cfypajenl-Xi6oIVJW5UEIY1pRgtBNUAm09cdQLLxrDG2VFaYXioKmxVksuoW0dl9RKOE1whpV8iu7_vQEANocU9jaNm_Mk_gfFcl0J</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Yu, Oscar</creator><creator>Yeh, Chih-Shen</creator><creator>Lai, Jih-Sheng</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201903</creationdate><title>Sequential Parallel Switching for Drain-Source Synchronous Rectifier Efficiency and Light-Load Stability Improvement</title><author>Yu, Oscar ; Yeh, Chih-Shen ; Lai, Jih-Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-74492b5e98c416e1df0c1f4f4b93b7a45a473e819aa8636eddc361a6e222c9253</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Field effect transistors</topic><topic>Gallium nitride</topic><topic>Inductance</topic><topic>light load stability</topic><topic>llc converter</topic><topic>power electronics</topic><topic>Rectifiers</topic><topic>solid state transformer</topic><topic>Stability analysis</topic><topic>Switches</topic><topic>synchronous rectifier</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Yu, Oscar</creatorcontrib><creatorcontrib>Yeh, Chih-Shen</creatorcontrib><creatorcontrib>Lai, Jih-Sheng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu, Oscar</au><au>Yeh, Chih-Shen</au><au>Lai, Jih-Sheng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sequential Parallel Switching for Drain-Source Synchronous Rectifier Efficiency and Light-Load Stability Improvement</atitle><btitle>2019 IEEE Applied Power Electronics Conference and Exposition (APEC)</btitle><stitle>APEC</stitle><date>2019-03</date><risdate>2019</risdate><spage>463</spage><epage>467</epage><pages>463-467</pages><eissn>2470-6647</eissn><eisbn>9781538683309</eisbn><eisbn>153868330X</eisbn><abstract>Drain-source synchronous rectification (SR) is a technique used to reduce the secondary-side conduction loss of an LLC resonant converter. In drain-source sensed SR, an early turn off issue can be observed due to parasitics in the drain-source voltage sensing loop. In LLC converter rectifiers where multiple SR switches are paralleled, sequential parallel switching (SPS) can be implemented to sequentially turn off the SR FETs to reduce the effect of these parasitics. By turning off SR FETs one by one over batch turn-off, the drain-source voltage signal near the turn-off moment can be enhanced, mitigating the effects of parasitics and the subsequent early turn-off issue. This method also reduces the amount of turn-off jitter experienced with low on-resistance (R DS,on ) FETs, which can start a detrimental resonance at light load conditions. Since the SR conduction time is prolonged, SPS can decrease body-diode/anti-parallel-diode conduction loss in the rectifier. This results in a net increase in converter efficiency, despite a slight increase in the SR FET's channel conduction loss. The concept and operation of SPS is proposed, explained, and simulated in this paper. Finally, SPS is implemented and verified at light load on a LLC resonant converter with paralleled GaN SR FETs.</abstract><pub>IEEE</pub><doi>10.1109/APEC.2019.8722283</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2470-6647 |
ispartof | 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), 2019, p.463-467 |
issn | 2470-6647 |
language | eng |
recordid | cdi_ieee_primary_8722283 |
source | IEEE Xplore All Conference Series |
subjects | Field effect transistors Gallium nitride Inductance light load stability llc converter power electronics Rectifiers solid state transformer Stability analysis Switches synchronous rectifier Testing |
title | Sequential Parallel Switching for Drain-Source Synchronous Rectifier Efficiency and Light-Load Stability Improvement |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A27%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sequential%20Parallel%20Switching%20for%20Drain-Source%20Synchronous%20Rectifier%20Efficiency%20and%20Light-Load%20Stability%20Improvement&rft.btitle=2019%20IEEE%20Applied%20Power%20Electronics%20Conference%20and%20Exposition%20(APEC)&rft.au=Yu,%20Oscar&rft.date=2019-03&rft.spage=463&rft.epage=467&rft.pages=463-467&rft.eissn=2470-6647&rft_id=info:doi/10.1109/APEC.2019.8722283&rft.eisbn=9781538683309&rft.eisbn_list=153868330X&rft_dat=%3Cieee_CHZPO%3E8722283%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-74492b5e98c416e1df0c1f4f4b93b7a45a473e819aa8636eddc361a6e222c9253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8722283&rfr_iscdi=true |