Loading…

CRA: Enabling Data-Intensive Applications in Containerized Environments

Today, a modern data center hosts a wide variety of applications comprising batch, interactive, machine learning, and streaming applications. In this paper, we factor out the commonalities in a large majority of these applications, into a generic dataflow layer called Common Runtime for Applications...

Full description

Saved in:
Bibliographic Details
Main Authors: Sabek, Ibrahim, Chandramouli, Badrish, Minhas, Umar Farooq
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Today, a modern data center hosts a wide variety of applications comprising batch, interactive, machine learning, and streaming applications. In this paper, we factor out the commonalities in a large majority of these applications, into a generic dataflow layer called Common Runtime for Applications (CRA). In parallel, another trend, with containerization technologies (e.g., Docker), has taken a serious hold on cloud-scale data centers, with direct implications on building next generation of data center applications. Container orchestrators (e.g., Kubernetes) have made deployment a lot easy, and they solve many infrastructure level problems, e.g., service discovery, auto-restart, and replication. For best in class performance, there is a need to marry the next generation applications with containerization technologies. To that end, CRA leverages and builds upon the containerization and resource orchestration capabilities of Kubernetes/Docker, and makes it easy to build a wide range of cloud-edge applications on top. To the best of our knowledge, we are the first to present a cloud native runtime for building data center applications. We show the efficiency of CRA through various micro-benchmarking experiments.
ISSN:2375-026X
DOI:10.1109/ICDE.2019.00192