Loading…

Ka-Band 3-D-Printed Wideband Groove Gap Waveguide Orthomode Transducer

An orthomode transducer (OMT) that falls into the twofold symmetry category is designed at the Ka-band with 33.33% bandwidth. Groove gap waveguide (GGWG) technology is adapted to implement the design due to its suitability for millimeter-wave (mm-wave) frequencies as electrical contacts between diff...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on microwave theory and techniques 2019-08, Vol.67 (8), p.3361-3369
Main Authors: Abdelaal, Mohamed A., Kishk, Ahmed A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-9101efd2d577be3fd8ed5d6d14f085ddbfe53bf1b24e1dc3cfb3286acfe472ba3
cites cdi_FETCH-LOGICAL-c293t-9101efd2d577be3fd8ed5d6d14f085ddbfe53bf1b24e1dc3cfb3286acfe472ba3
container_end_page 3369
container_issue 8
container_start_page 3361
container_title IEEE transactions on microwave theory and techniques
container_volume 67
creator Abdelaal, Mohamed A.
Kishk, Ahmed A.
description An orthomode transducer (OMT) that falls into the twofold symmetry category is designed at the Ka-band with 33.33% bandwidth. Groove gap waveguide (GGWG) technology is adapted to implement the design due to its suitability for millimeter-wave (mm-wave) frequencies as electrical contacts between different parts are not necessary. Moreover, two transitions are deployed to broaden the operating bandwidth. The first transition is GGWG to WR-28 standard waveguide, which also acts as a power combiner. The second transition is placed between two layers of GGWGs. This new OMT consists of two main sections, the OMT core section, and the assembly section of different parts. Each section is investigated and simulated separately; then the whole structure is simulated to validate the performance. A prototype is built using 3-D-printing technology with copper-electroplated surfaces. A back-to-back measurements technique indicated matching and isolation level better than 12.5 and 25 dB, respectively, for both polarizations over the entire band. Nevertheless, the insertion loss has an acceptable level over such bands.
doi_str_mv 10.1109/TMTT.2019.2919630
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8736526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8736526</ieee_id><sourcerecordid>2275627561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-9101efd2d577be3fd8ed5d6d14f085ddbfe53bf1b24e1dc3cfb3286acfe472ba3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwpeJ2ZkzRtc6nTVXEyLyq7DElzoh2unWk78N_bsuHF4Xy97znwEHINbAbA1F3xVhQzzkDNuAKVCHZCJiBlSlWSslMyYQwyquKMnZOLtt0MbSxZNiGLV0MfTO0iQR_pe6jqDl20rhzacZiHptljlJtdtDZ7_OyHRbQK3VezbYaqCKZuXV9iuCRn3ny3eHXMU_KxeCrmz3S5yl_m90taciU6qoABesedTFOLwrsMnXSJg9izTDpnPUphPVgeI7hSlN4KniWm9Bin3BoxJbeHu7vQ_PTYdnrT9KEeXmrOU5mMAYMKDqoyNG0b0OtdqLYm_GpgesSlR1x6xKWPuAbPzcFTIeK_PktFInki_gAC9WZd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2275627561</pqid></control><display><type>article</type><title>Ka-Band 3-D-Printed Wideband Groove Gap Waveguide Orthomode Transducer</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Abdelaal, Mohamed A. ; Kishk, Ahmed A.</creator><creatorcontrib>Abdelaal, Mohamed A. ; Kishk, Ahmed A.</creatorcontrib><description>An orthomode transducer (OMT) that falls into the twofold symmetry category is designed at the Ka-band with 33.33% bandwidth. Groove gap waveguide (GGWG) technology is adapted to implement the design due to its suitability for millimeter-wave (mm-wave) frequencies as electrical contacts between different parts are not necessary. Moreover, two transitions are deployed to broaden the operating bandwidth. The first transition is GGWG to WR-28 standard waveguide, which also acts as a power combiner. The second transition is placed between two layers of GGWGs. This new OMT consists of two main sections, the OMT core section, and the assembly section of different parts. Each section is investigated and simulated separately; then the whole structure is simulated to validate the performance. A prototype is built using 3-D-printing technology with copper-electroplated surfaces. A back-to-back measurements technique indicated matching and isolation level better than 12.5 and 25 dB, respectively, for both polarizations over the entire band. Nevertheless, the insertion loss has an acceptable level over such bands.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2019.2919630</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-D-printed wideband OMT ; 5G OMT ; Acceptable noise levels ; Bandwidths ; Broadband ; Electric contacts ; Extremely high frequencies ; groove gap waveguide (GGWG) ; Grooves ; Insertion loss ; Microwave theory and techniques ; Millimeter waves ; millimeter-wave (mm-wave) ; orthomode transducer (OMT) ; Power combiners ; Simulation ; Three dimensional printing ; Transducers ; Waveguide transitions ; Wideband</subject><ispartof>IEEE transactions on microwave theory and techniques, 2019-08, Vol.67 (8), p.3361-3369</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-9101efd2d577be3fd8ed5d6d14f085ddbfe53bf1b24e1dc3cfb3286acfe472ba3</citedby><cites>FETCH-LOGICAL-c293t-9101efd2d577be3fd8ed5d6d14f085ddbfe53bf1b24e1dc3cfb3286acfe472ba3</cites><orcidid>0000-0001-9265-7269 ; 0000-0002-2034-4981</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8736526$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Abdelaal, Mohamed A.</creatorcontrib><creatorcontrib>Kishk, Ahmed A.</creatorcontrib><title>Ka-Band 3-D-Printed Wideband Groove Gap Waveguide Orthomode Transducer</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>An orthomode transducer (OMT) that falls into the twofold symmetry category is designed at the Ka-band with 33.33% bandwidth. Groove gap waveguide (GGWG) technology is adapted to implement the design due to its suitability for millimeter-wave (mm-wave) frequencies as electrical contacts between different parts are not necessary. Moreover, two transitions are deployed to broaden the operating bandwidth. The first transition is GGWG to WR-28 standard waveguide, which also acts as a power combiner. The second transition is placed between two layers of GGWGs. This new OMT consists of two main sections, the OMT core section, and the assembly section of different parts. Each section is investigated and simulated separately; then the whole structure is simulated to validate the performance. A prototype is built using 3-D-printing technology with copper-electroplated surfaces. A back-to-back measurements technique indicated matching and isolation level better than 12.5 and 25 dB, respectively, for both polarizations over the entire band. Nevertheless, the insertion loss has an acceptable level over such bands.</description><subject>3-D-printed wideband OMT</subject><subject>5G OMT</subject><subject>Acceptable noise levels</subject><subject>Bandwidths</subject><subject>Broadband</subject><subject>Electric contacts</subject><subject>Extremely high frequencies</subject><subject>groove gap waveguide (GGWG)</subject><subject>Grooves</subject><subject>Insertion loss</subject><subject>Microwave theory and techniques</subject><subject>Millimeter waves</subject><subject>millimeter-wave (mm-wave)</subject><subject>orthomode transducer (OMT)</subject><subject>Power combiners</subject><subject>Simulation</subject><subject>Three dimensional printing</subject><subject>Transducers</subject><subject>Waveguide transitions</subject><subject>Wideband</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKc_QLwpeJ2ZkzRtc6nTVXEyLyq7DElzoh2unWk78N_bsuHF4Xy97znwEHINbAbA1F3xVhQzzkDNuAKVCHZCJiBlSlWSslMyYQwyquKMnZOLtt0MbSxZNiGLV0MfTO0iQR_pe6jqDl20rhzacZiHptljlJtdtDZ7_OyHRbQK3VezbYaqCKZuXV9iuCRn3ny3eHXMU_KxeCrmz3S5yl_m90taciU6qoABesedTFOLwrsMnXSJg9izTDpnPUphPVgeI7hSlN4KniWm9Bin3BoxJbeHu7vQ_PTYdnrT9KEeXmrOU5mMAYMKDqoyNG0b0OtdqLYm_GpgesSlR1x6xKWPuAbPzcFTIeK_PktFInki_gAC9WZd</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Abdelaal, Mohamed A.</creator><creator>Kishk, Ahmed A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9265-7269</orcidid><orcidid>https://orcid.org/0000-0002-2034-4981</orcidid></search><sort><creationdate>20190801</creationdate><title>Ka-Band 3-D-Printed Wideband Groove Gap Waveguide Orthomode Transducer</title><author>Abdelaal, Mohamed A. ; Kishk, Ahmed A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-9101efd2d577be3fd8ed5d6d14f085ddbfe53bf1b24e1dc3cfb3286acfe472ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3-D-printed wideband OMT</topic><topic>5G OMT</topic><topic>Acceptable noise levels</topic><topic>Bandwidths</topic><topic>Broadband</topic><topic>Electric contacts</topic><topic>Extremely high frequencies</topic><topic>groove gap waveguide (GGWG)</topic><topic>Grooves</topic><topic>Insertion loss</topic><topic>Microwave theory and techniques</topic><topic>Millimeter waves</topic><topic>millimeter-wave (mm-wave)</topic><topic>orthomode transducer (OMT)</topic><topic>Power combiners</topic><topic>Simulation</topic><topic>Three dimensional printing</topic><topic>Transducers</topic><topic>Waveguide transitions</topic><topic>Wideband</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdelaal, Mohamed A.</creatorcontrib><creatorcontrib>Kishk, Ahmed A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdelaal, Mohamed A.</au><au>Kishk, Ahmed A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ka-Band 3-D-Printed Wideband Groove Gap Waveguide Orthomode Transducer</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>67</volume><issue>8</issue><spage>3361</spage><epage>3369</epage><pages>3361-3369</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>An orthomode transducer (OMT) that falls into the twofold symmetry category is designed at the Ka-band with 33.33% bandwidth. Groove gap waveguide (GGWG) technology is adapted to implement the design due to its suitability for millimeter-wave (mm-wave) frequencies as electrical contacts between different parts are not necessary. Moreover, two transitions are deployed to broaden the operating bandwidth. The first transition is GGWG to WR-28 standard waveguide, which also acts as a power combiner. The second transition is placed between two layers of GGWGs. This new OMT consists of two main sections, the OMT core section, and the assembly section of different parts. Each section is investigated and simulated separately; then the whole structure is simulated to validate the performance. A prototype is built using 3-D-printing technology with copper-electroplated surfaces. A back-to-back measurements technique indicated matching and isolation level better than 12.5 and 25 dB, respectively, for both polarizations over the entire band. Nevertheless, the insertion loss has an acceptable level over such bands.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2019.2919630</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9265-7269</orcidid><orcidid>https://orcid.org/0000-0002-2034-4981</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 2019-08, Vol.67 (8), p.3361-3369
issn 0018-9480
1557-9670
language eng
recordid cdi_ieee_primary_8736526
source IEEE Electronic Library (IEL) Journals
subjects 3-D-printed wideband OMT
5G OMT
Acceptable noise levels
Bandwidths
Broadband
Electric contacts
Extremely high frequencies
groove gap waveguide (GGWG)
Grooves
Insertion loss
Microwave theory and techniques
Millimeter waves
millimeter-wave (mm-wave)
orthomode transducer (OMT)
Power combiners
Simulation
Three dimensional printing
Transducers
Waveguide transitions
Wideband
title Ka-Band 3-D-Printed Wideband Groove Gap Waveguide Orthomode Transducer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A23%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ka-Band%203-D-Printed%20Wideband%20Groove%20Gap%20Waveguide%20Orthomode%20Transducer&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Abdelaal,%20Mohamed%20A.&rft.date=2019-08-01&rft.volume=67&rft.issue=8&rft.spage=3361&rft.epage=3369&rft.pages=3361-3369&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2019.2919630&rft_dat=%3Cproquest_ieee_%3E2275627561%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-9101efd2d577be3fd8ed5d6d14f085ddbfe53bf1b24e1dc3cfb3286acfe472ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2275627561&rft_id=info:pmid/&rft_ieee_id=8736526&rfr_iscdi=true