Loading…
A Novel Testability Optimization Algorithm Counting the Reliability of Test Points
The traditional testability mathematical model is attributed with inaccurate when applied in real industry occasions for it ignores the reliability of the test points (usually considered fully convinced). In this paper, we devise a novel testability optimization algorithm regarding with the reliabil...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 342 |
container_issue | |
container_start_page | 338 |
container_title | |
container_volume | |
creator | Hou, Wenkui Liu, Liangli Li, Pengyu |
description | The traditional testability mathematical model is attributed with inaccurate when applied in real industry occasions for it ignores the reliability of the test points (usually considered fully convinced). In this paper, we devise a novel testability optimization algorithm regarding with the reliability of test points. First, the D-matrix of uncertainty is acquired based on the Bayes-learning. Then, quantizing the loss function with the information entropy and utilizing the global searching ability of Genetic-PSO algorithm and the efficiency of the Greedy algorithm to form the test group. The proposed algorithm is validated with test data of avionics. The experiment result shows the method is able to select the optimal test group considering the uncertainty. |
doi_str_mv | 10.1109/PHM-Paris.2019.00064 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8756396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8756396</ieee_id><sourcerecordid>8756396</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-913586f3a64a7eb98c1d17b331ce8f69d3c768a362865abbc0cf5b323faa1a4b3</originalsourceid><addsrcrecordid>eNo1jMtOAjEUQKuJiQT5Al30BwZ72-ltu5wQFRIUQnBN2qED18yDzFQT_HqNj9XZnHMYuwMxBRDufj1_zta-p2EqBbipEALzCzZxxoKRFoSSzlyykQTETKPGazYZhrdvTRjjcqlHbFPwl-4j1nwbh-QD1ZTOfHVK1NCnT9S1vKgPXU_p2PBZ994mag88HSPfxJr-_a76yfm6ozYNN-yq8vUQJ38cs9fHh-1sni1XT4tZscwIjE6ZA6UtVspj7k0MzpawBxOUgjLaCt1elQatVygtah9CKcpKByVV5T34PKgxu_39Uoxxd-qp8f15Z41G5VB9AZ5hUsM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Novel Testability Optimization Algorithm Counting the Reliability of Test Points</title><source>IEEE Xplore All Conference Series</source><creator>Hou, Wenkui ; Liu, Liangli ; Li, Pengyu</creator><creatorcontrib>Hou, Wenkui ; Liu, Liangli ; Li, Pengyu</creatorcontrib><description>The traditional testability mathematical model is attributed with inaccurate when applied in real industry occasions for it ignores the reliability of the test points (usually considered fully convinced). In this paper, we devise a novel testability optimization algorithm regarding with the reliability of test points. First, the D-matrix of uncertainty is acquired based on the Bayes-learning. Then, quantizing the loss function with the information entropy and utilizing the global searching ability of Genetic-PSO algorithm and the efficiency of the Greedy algorithm to form the test group. The proposed algorithm is validated with test data of avionics. The experiment result shows the method is able to select the optimal test group considering the uncertainty.</description><identifier>EISSN: 2166-5656</identifier><identifier>EISBN: 9781728103297</identifier><identifier>EISBN: 1728103290</identifier><identifier>DOI: 10.1109/PHM-Paris.2019.00064</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayes methods ; Fault diagnosis ; Finite impulse response filters ; Genetic-PSO ; Greedy algorithm ; Mathematical model ; Optimization ; Testability ; Uncertainty</subject><ispartof>2019 Prognostics and System Health Management Conference (PHM-Paris), 2019, p.338-342</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8756396$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8756396$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hou, Wenkui</creatorcontrib><creatorcontrib>Liu, Liangli</creatorcontrib><creatorcontrib>Li, Pengyu</creatorcontrib><title>A Novel Testability Optimization Algorithm Counting the Reliability of Test Points</title><title>2019 Prognostics and System Health Management Conference (PHM-Paris)</title><addtitle>PHM</addtitle><description>The traditional testability mathematical model is attributed with inaccurate when applied in real industry occasions for it ignores the reliability of the test points (usually considered fully convinced). In this paper, we devise a novel testability optimization algorithm regarding with the reliability of test points. First, the D-matrix of uncertainty is acquired based on the Bayes-learning. Then, quantizing the loss function with the information entropy and utilizing the global searching ability of Genetic-PSO algorithm and the efficiency of the Greedy algorithm to form the test group. The proposed algorithm is validated with test data of avionics. The experiment result shows the method is able to select the optimal test group considering the uncertainty.</description><subject>Bayes methods</subject><subject>Fault diagnosis</subject><subject>Finite impulse response filters</subject><subject>Genetic-PSO</subject><subject>Greedy algorithm</subject><subject>Mathematical model</subject><subject>Optimization</subject><subject>Testability</subject><subject>Uncertainty</subject><issn>2166-5656</issn><isbn>9781728103297</isbn><isbn>1728103290</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1jMtOAjEUQKuJiQT5Al30BwZ72-ltu5wQFRIUQnBN2qED18yDzFQT_HqNj9XZnHMYuwMxBRDufj1_zta-p2EqBbipEALzCzZxxoKRFoSSzlyykQTETKPGazYZhrdvTRjjcqlHbFPwl-4j1nwbh-QD1ZTOfHVK1NCnT9S1vKgPXU_p2PBZ994mag88HSPfxJr-_a76yfm6ozYNN-yq8vUQJ38cs9fHh-1sni1XT4tZscwIjE6ZA6UtVspj7k0MzpawBxOUgjLaCt1elQatVygtah9CKcpKByVV5T34PKgxu_39Uoxxd-qp8f15Z41G5VB9AZ5hUsM</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Hou, Wenkui</creator><creator>Liu, Liangli</creator><creator>Li, Pengyu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201905</creationdate><title>A Novel Testability Optimization Algorithm Counting the Reliability of Test Points</title><author>Hou, Wenkui ; Liu, Liangli ; Li, Pengyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-913586f3a64a7eb98c1d17b331ce8f69d3c768a362865abbc0cf5b323faa1a4b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayes methods</topic><topic>Fault diagnosis</topic><topic>Finite impulse response filters</topic><topic>Genetic-PSO</topic><topic>Greedy algorithm</topic><topic>Mathematical model</topic><topic>Optimization</topic><topic>Testability</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Hou, Wenkui</creatorcontrib><creatorcontrib>Liu, Liangli</creatorcontrib><creatorcontrib>Li, Pengyu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hou, Wenkui</au><au>Liu, Liangli</au><au>Li, Pengyu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Novel Testability Optimization Algorithm Counting the Reliability of Test Points</atitle><btitle>2019 Prognostics and System Health Management Conference (PHM-Paris)</btitle><stitle>PHM</stitle><date>2019-05</date><risdate>2019</risdate><spage>338</spage><epage>342</epage><pages>338-342</pages><eissn>2166-5656</eissn><eisbn>9781728103297</eisbn><eisbn>1728103290</eisbn><coden>IEEPAD</coden><abstract>The traditional testability mathematical model is attributed with inaccurate when applied in real industry occasions for it ignores the reliability of the test points (usually considered fully convinced). In this paper, we devise a novel testability optimization algorithm regarding with the reliability of test points. First, the D-matrix of uncertainty is acquired based on the Bayes-learning. Then, quantizing the loss function with the information entropy and utilizing the global searching ability of Genetic-PSO algorithm and the efficiency of the Greedy algorithm to form the test group. The proposed algorithm is validated with test data of avionics. The experiment result shows the method is able to select the optimal test group considering the uncertainty.</abstract><pub>IEEE</pub><doi>10.1109/PHM-Paris.2019.00064</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2166-5656 |
ispartof | 2019 Prognostics and System Health Management Conference (PHM-Paris), 2019, p.338-342 |
issn | 2166-5656 |
language | eng |
recordid | cdi_ieee_primary_8756396 |
source | IEEE Xplore All Conference Series |
subjects | Bayes methods Fault diagnosis Finite impulse response filters Genetic-PSO Greedy algorithm Mathematical model Optimization Testability Uncertainty |
title | A Novel Testability Optimization Algorithm Counting the Reliability of Test Points |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A26%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Novel%20Testability%20Optimization%20Algorithm%20Counting%20the%20Reliability%20of%20Test%20Points&rft.btitle=2019%20Prognostics%20and%20System%20Health%20Management%20Conference%20(PHM-Paris)&rft.au=Hou,%20Wenkui&rft.date=2019-05&rft.spage=338&rft.epage=342&rft.pages=338-342&rft.eissn=2166-5656&rft.coden=IEEPAD&rft_id=info:doi/10.1109/PHM-Paris.2019.00064&rft.eisbn=9781728103297&rft.eisbn_list=1728103290&rft_dat=%3Cieee_CHZPO%3E8756396%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-913586f3a64a7eb98c1d17b331ce8f69d3c768a362865abbc0cf5b323faa1a4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8756396&rfr_iscdi=true |