Loading…

A Novel Testability Optimization Algorithm Counting the Reliability of Test Points

The traditional testability mathematical model is attributed with inaccurate when applied in real industry occasions for it ignores the reliability of the test points (usually considered fully convinced). In this paper, we devise a novel testability optimization algorithm regarding with the reliabil...

Full description

Saved in:
Bibliographic Details
Main Authors: Hou, Wenkui, Liu, Liangli, Li, Pengyu
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 342
container_issue
container_start_page 338
container_title
container_volume
creator Hou, Wenkui
Liu, Liangli
Li, Pengyu
description The traditional testability mathematical model is attributed with inaccurate when applied in real industry occasions for it ignores the reliability of the test points (usually considered fully convinced). In this paper, we devise a novel testability optimization algorithm regarding with the reliability of test points. First, the D-matrix of uncertainty is acquired based on the Bayes-learning. Then, quantizing the loss function with the information entropy and utilizing the global searching ability of Genetic-PSO algorithm and the efficiency of the Greedy algorithm to form the test group. The proposed algorithm is validated with test data of avionics. The experiment result shows the method is able to select the optimal test group considering the uncertainty.
doi_str_mv 10.1109/PHM-Paris.2019.00064
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8756396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8756396</ieee_id><sourcerecordid>8756396</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-913586f3a64a7eb98c1d17b331ce8f69d3c768a362865abbc0cf5b323faa1a4b3</originalsourceid><addsrcrecordid>eNo1jMtOAjEUQKuJiQT5Al30BwZ72-ltu5wQFRIUQnBN2qED18yDzFQT_HqNj9XZnHMYuwMxBRDufj1_zta-p2EqBbipEALzCzZxxoKRFoSSzlyykQTETKPGazYZhrdvTRjjcqlHbFPwl-4j1nwbh-QD1ZTOfHVK1NCnT9S1vKgPXU_p2PBZ994mag88HSPfxJr-_a76yfm6ozYNN-yq8vUQJ38cs9fHh-1sni1XT4tZscwIjE6ZA6UtVspj7k0MzpawBxOUgjLaCt1elQatVygtah9CKcpKByVV5T34PKgxu_39Uoxxd-qp8f15Z41G5VB9AZ5hUsM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Novel Testability Optimization Algorithm Counting the Reliability of Test Points</title><source>IEEE Xplore All Conference Series</source><creator>Hou, Wenkui ; Liu, Liangli ; Li, Pengyu</creator><creatorcontrib>Hou, Wenkui ; Liu, Liangli ; Li, Pengyu</creatorcontrib><description>The traditional testability mathematical model is attributed with inaccurate when applied in real industry occasions for it ignores the reliability of the test points (usually considered fully convinced). In this paper, we devise a novel testability optimization algorithm regarding with the reliability of test points. First, the D-matrix of uncertainty is acquired based on the Bayes-learning. Then, quantizing the loss function with the information entropy and utilizing the global searching ability of Genetic-PSO algorithm and the efficiency of the Greedy algorithm to form the test group. The proposed algorithm is validated with test data of avionics. The experiment result shows the method is able to select the optimal test group considering the uncertainty.</description><identifier>EISSN: 2166-5656</identifier><identifier>EISBN: 9781728103297</identifier><identifier>EISBN: 1728103290</identifier><identifier>DOI: 10.1109/PHM-Paris.2019.00064</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayes methods ; Fault diagnosis ; Finite impulse response filters ; Genetic-PSO ; Greedy algorithm ; Mathematical model ; Optimization ; Testability ; Uncertainty</subject><ispartof>2019 Prognostics and System Health Management Conference (PHM-Paris), 2019, p.338-342</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8756396$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8756396$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hou, Wenkui</creatorcontrib><creatorcontrib>Liu, Liangli</creatorcontrib><creatorcontrib>Li, Pengyu</creatorcontrib><title>A Novel Testability Optimization Algorithm Counting the Reliability of Test Points</title><title>2019 Prognostics and System Health Management Conference (PHM-Paris)</title><addtitle>PHM</addtitle><description>The traditional testability mathematical model is attributed with inaccurate when applied in real industry occasions for it ignores the reliability of the test points (usually considered fully convinced). In this paper, we devise a novel testability optimization algorithm regarding with the reliability of test points. First, the D-matrix of uncertainty is acquired based on the Bayes-learning. Then, quantizing the loss function with the information entropy and utilizing the global searching ability of Genetic-PSO algorithm and the efficiency of the Greedy algorithm to form the test group. The proposed algorithm is validated with test data of avionics. The experiment result shows the method is able to select the optimal test group considering the uncertainty.</description><subject>Bayes methods</subject><subject>Fault diagnosis</subject><subject>Finite impulse response filters</subject><subject>Genetic-PSO</subject><subject>Greedy algorithm</subject><subject>Mathematical model</subject><subject>Optimization</subject><subject>Testability</subject><subject>Uncertainty</subject><issn>2166-5656</issn><isbn>9781728103297</isbn><isbn>1728103290</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1jMtOAjEUQKuJiQT5Al30BwZ72-ltu5wQFRIUQnBN2qED18yDzFQT_HqNj9XZnHMYuwMxBRDufj1_zta-p2EqBbipEALzCzZxxoKRFoSSzlyykQTETKPGazYZhrdvTRjjcqlHbFPwl-4j1nwbh-QD1ZTOfHVK1NCnT9S1vKgPXU_p2PBZ994mag88HSPfxJr-_a76yfm6ozYNN-yq8vUQJ38cs9fHh-1sni1XT4tZscwIjE6ZA6UtVspj7k0MzpawBxOUgjLaCt1elQatVygtah9CKcpKByVV5T34PKgxu_39Uoxxd-qp8f15Z41G5VB9AZ5hUsM</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Hou, Wenkui</creator><creator>Liu, Liangli</creator><creator>Li, Pengyu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201905</creationdate><title>A Novel Testability Optimization Algorithm Counting the Reliability of Test Points</title><author>Hou, Wenkui ; Liu, Liangli ; Li, Pengyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-913586f3a64a7eb98c1d17b331ce8f69d3c768a362865abbc0cf5b323faa1a4b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayes methods</topic><topic>Fault diagnosis</topic><topic>Finite impulse response filters</topic><topic>Genetic-PSO</topic><topic>Greedy algorithm</topic><topic>Mathematical model</topic><topic>Optimization</topic><topic>Testability</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Hou, Wenkui</creatorcontrib><creatorcontrib>Liu, Liangli</creatorcontrib><creatorcontrib>Li, Pengyu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hou, Wenkui</au><au>Liu, Liangli</au><au>Li, Pengyu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Novel Testability Optimization Algorithm Counting the Reliability of Test Points</atitle><btitle>2019 Prognostics and System Health Management Conference (PHM-Paris)</btitle><stitle>PHM</stitle><date>2019-05</date><risdate>2019</risdate><spage>338</spage><epage>342</epage><pages>338-342</pages><eissn>2166-5656</eissn><eisbn>9781728103297</eisbn><eisbn>1728103290</eisbn><coden>IEEPAD</coden><abstract>The traditional testability mathematical model is attributed with inaccurate when applied in real industry occasions for it ignores the reliability of the test points (usually considered fully convinced). In this paper, we devise a novel testability optimization algorithm regarding with the reliability of test points. First, the D-matrix of uncertainty is acquired based on the Bayes-learning. Then, quantizing the loss function with the information entropy and utilizing the global searching ability of Genetic-PSO algorithm and the efficiency of the Greedy algorithm to form the test group. The proposed algorithm is validated with test data of avionics. The experiment result shows the method is able to select the optimal test group considering the uncertainty.</abstract><pub>IEEE</pub><doi>10.1109/PHM-Paris.2019.00064</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2166-5656
ispartof 2019 Prognostics and System Health Management Conference (PHM-Paris), 2019, p.338-342
issn 2166-5656
language eng
recordid cdi_ieee_primary_8756396
source IEEE Xplore All Conference Series
subjects Bayes methods
Fault diagnosis
Finite impulse response filters
Genetic-PSO
Greedy algorithm
Mathematical model
Optimization
Testability
Uncertainty
title A Novel Testability Optimization Algorithm Counting the Reliability of Test Points
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A26%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Novel%20Testability%20Optimization%20Algorithm%20Counting%20the%20Reliability%20of%20Test%20Points&rft.btitle=2019%20Prognostics%20and%20System%20Health%20Management%20Conference%20(PHM-Paris)&rft.au=Hou,%20Wenkui&rft.date=2019-05&rft.spage=338&rft.epage=342&rft.pages=338-342&rft.eissn=2166-5656&rft.coden=IEEPAD&rft_id=info:doi/10.1109/PHM-Paris.2019.00064&rft.eisbn=9781728103297&rft.eisbn_list=1728103290&rft_dat=%3Cieee_CHZPO%3E8756396%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-913586f3a64a7eb98c1d17b331ce8f69d3c768a362865abbc0cf5b323faa1a4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8756396&rfr_iscdi=true