Loading…

Efficient Parameter Estimation for Cone-Shaped Target Based on Distributed Radar Networks

An echo signal received from a cone-shaped target with micro-motion is composed of a linear mixture of individual signals radiated from multiple effective scatterers with the occlusion effect, resulting in difficulties in parameter estimation for ballistic target discrimination (BTD). To solve this,...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2019-11, Vol.19 (21), p.9736-9747
Main Authors: Choi, In-Oh, Park, Sang-Hong, Kang, Ki-Bong, Lee, Seong-Hyeon, Kim, Kyung-Tae
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-8a0d82e84c17cc4323166ab6348e71ed30c7bebca036976d1d5512fa13cffe1c3
cites cdi_FETCH-LOGICAL-c293t-8a0d82e84c17cc4323166ab6348e71ed30c7bebca036976d1d5512fa13cffe1c3
container_end_page 9747
container_issue 21
container_start_page 9736
container_title IEEE sensors journal
container_volume 19
creator Choi, In-Oh
Park, Sang-Hong
Kang, Ki-Bong
Lee, Seong-Hyeon
Kim, Kyung-Tae
description An echo signal received from a cone-shaped target with micro-motion is composed of a linear mixture of individual signals radiated from multiple effective scatterers with the occlusion effect, resulting in difficulties in parameter estimation for ballistic target discrimination (BTD). To solve this, conventional methods have been based on the sophisticated signal decomposition techniques using a 2D joint time-frequency (JTF) image or a 2D radial-range (RR) history image; however, they are inefficient for real-time BTD due to complex 2D image processing. Therefore, we propose a new parameter estimation framework consisting of five stages: 1) a normalization step; 2) signal decomposition and data association using independent component analysis in the distributed radar network; 3) estimation of dynamic parameters using 1D micro-Doppler frequency trajectories; 4) restoration of 1D RR histories; and 5) estimation of geometric parameters using the restored 1D RR histories. In particular, ICA of stage 2 is more time-saving than the conventional mathematical model-based methods using the 2D JTF image due to signal decomposition using the 1D normalized echo signals. Moreover, in the stage 4, high-quality 1D RR histories can be restored in spite of using the 2D RR history image with low resolution, compared with the conventional methods using 2D RR history image of very high resolution. In the simulations, we observed that our proposed framework is capable of performing efficient parameter estimation for the real-time BTD.
doi_str_mv 10.1109/JSEN.2019.2927921
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8758795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8758795</ieee_id><sourcerecordid>2303954285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-8a0d82e84c17cc4323166ab6348e71ed30c7bebca036976d1d5512fa13cffe1c3</originalsourceid><addsrcrecordid>eNo9kFtLAzEQhYMoWKs_QHxZ8HlrLptN8qh1vVGq2Ar6FLLZiW613ZqkiP_eLC0-zRzmOzPMQeiU4BEhWF08zKrpiGKiRlRRoSjZQwPCucyJKOR-3zOcF0y8HqKjEBY4kYKLAXqrnGttC6uYPRlvlhDBZ1WI7dLEtltlrvPZuFtBPvswa2iyufHvELMrE5JI8-s2RN_Wm5jks2mMz6YQfzr_GY7RgTNfAU52dYhebqr5-C6fPN7ejy8nuaWKxVwa3EgKsrBEWFswykhZmrpkhQRBoGHYihpqazArlSgb0nBOqDOEWeeAWDZE59u9a999byBEveg2fpVOasowU7ygkieKbCnruxA8OL326Uf_qwnWfYK6T1D3CepdgslztvW0APDPS8GlUJz9AZWvbPc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303954285</pqid></control><display><type>article</type><title>Efficient Parameter Estimation for Cone-Shaped Target Based on Distributed Radar Networks</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Choi, In-Oh ; Park, Sang-Hong ; Kang, Ki-Bong ; Lee, Seong-Hyeon ; Kim, Kyung-Tae</creator><creatorcontrib>Choi, In-Oh ; Park, Sang-Hong ; Kang, Ki-Bong ; Lee, Seong-Hyeon ; Kim, Kyung-Tae</creatorcontrib><description>An echo signal received from a cone-shaped target with micro-motion is composed of a linear mixture of individual signals radiated from multiple effective scatterers with the occlusion effect, resulting in difficulties in parameter estimation for ballistic target discrimination (BTD). To solve this, conventional methods have been based on the sophisticated signal decomposition techniques using a 2D joint time-frequency (JTF) image or a 2D radial-range (RR) history image; however, they are inefficient for real-time BTD due to complex 2D image processing. Therefore, we propose a new parameter estimation framework consisting of five stages: 1) a normalization step; 2) signal decomposition and data association using independent component analysis in the distributed radar network; 3) estimation of dynamic parameters using 1D micro-Doppler frequency trajectories; 4) restoration of 1D RR histories; and 5) estimation of geometric parameters using the restored 1D RR histories. In particular, ICA of stage 2 is more time-saving than the conventional mathematical model-based methods using the 2D JTF image due to signal decomposition using the 1D normalized echo signals. Moreover, in the stage 4, high-quality 1D RR histories can be restored in spite of using the 2D RR history image with low resolution, compared with the conventional methods using 2D RR history image of very high resolution. In the simulations, we observed that our proposed framework is capable of performing efficient parameter estimation for the real-time BTD.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2019.2927921</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer simulation ; Decomposition ; effective scatterer ; History ; Image processing ; Image resolution ; Image restoration ; Independent component analysis ; micro-Doppler frequency trajectory ; Occlusion ; Parameter estimation ; Radar ; Radar networks ; radial-range history ; Real time ; real-time ballistic target discrimination ; Sensors ; Signal resolution ; Trajectory ; Two dimensional displays ; Two dimensional models</subject><ispartof>IEEE sensors journal, 2019-11, Vol.19 (21), p.9736-9747</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-8a0d82e84c17cc4323166ab6348e71ed30c7bebca036976d1d5512fa13cffe1c3</citedby><cites>FETCH-LOGICAL-c293t-8a0d82e84c17cc4323166ab6348e71ed30c7bebca036976d1d5512fa13cffe1c3</cites><orcidid>0000-0002-0410-1066 ; 0000-0001-8512-1431 ; 0000-0003-1200-5282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8758795$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Choi, In-Oh</creatorcontrib><creatorcontrib>Park, Sang-Hong</creatorcontrib><creatorcontrib>Kang, Ki-Bong</creatorcontrib><creatorcontrib>Lee, Seong-Hyeon</creatorcontrib><creatorcontrib>Kim, Kyung-Tae</creatorcontrib><title>Efficient Parameter Estimation for Cone-Shaped Target Based on Distributed Radar Networks</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>An echo signal received from a cone-shaped target with micro-motion is composed of a linear mixture of individual signals radiated from multiple effective scatterers with the occlusion effect, resulting in difficulties in parameter estimation for ballistic target discrimination (BTD). To solve this, conventional methods have been based on the sophisticated signal decomposition techniques using a 2D joint time-frequency (JTF) image or a 2D radial-range (RR) history image; however, they are inefficient for real-time BTD due to complex 2D image processing. Therefore, we propose a new parameter estimation framework consisting of five stages: 1) a normalization step; 2) signal decomposition and data association using independent component analysis in the distributed radar network; 3) estimation of dynamic parameters using 1D micro-Doppler frequency trajectories; 4) restoration of 1D RR histories; and 5) estimation of geometric parameters using the restored 1D RR histories. In particular, ICA of stage 2 is more time-saving than the conventional mathematical model-based methods using the 2D JTF image due to signal decomposition using the 1D normalized echo signals. Moreover, in the stage 4, high-quality 1D RR histories can be restored in spite of using the 2D RR history image with low resolution, compared with the conventional methods using 2D RR history image of very high resolution. In the simulations, we observed that our proposed framework is capable of performing efficient parameter estimation for the real-time BTD.</description><subject>Computer simulation</subject><subject>Decomposition</subject><subject>effective scatterer</subject><subject>History</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Image restoration</subject><subject>Independent component analysis</subject><subject>micro-Doppler frequency trajectory</subject><subject>Occlusion</subject><subject>Parameter estimation</subject><subject>Radar</subject><subject>Radar networks</subject><subject>radial-range history</subject><subject>Real time</subject><subject>real-time ballistic target discrimination</subject><subject>Sensors</subject><subject>Signal resolution</subject><subject>Trajectory</subject><subject>Two dimensional displays</subject><subject>Two dimensional models</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kFtLAzEQhYMoWKs_QHxZ8HlrLptN8qh1vVGq2Ar6FLLZiW613ZqkiP_eLC0-zRzmOzPMQeiU4BEhWF08zKrpiGKiRlRRoSjZQwPCucyJKOR-3zOcF0y8HqKjEBY4kYKLAXqrnGttC6uYPRlvlhDBZ1WI7dLEtltlrvPZuFtBPvswa2iyufHvELMrE5JI8-s2RN_Wm5jks2mMz6YQfzr_GY7RgTNfAU52dYhebqr5-C6fPN7ejy8nuaWKxVwa3EgKsrBEWFswykhZmrpkhQRBoGHYihpqazArlSgb0nBOqDOEWeeAWDZE59u9a999byBEveg2fpVOasowU7ygkieKbCnruxA8OL326Uf_qwnWfYK6T1D3CepdgslztvW0APDPS8GlUJz9AZWvbPc</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Choi, In-Oh</creator><creator>Park, Sang-Hong</creator><creator>Kang, Ki-Bong</creator><creator>Lee, Seong-Hyeon</creator><creator>Kim, Kyung-Tae</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0410-1066</orcidid><orcidid>https://orcid.org/0000-0001-8512-1431</orcidid><orcidid>https://orcid.org/0000-0003-1200-5282</orcidid></search><sort><creationdate>20191101</creationdate><title>Efficient Parameter Estimation for Cone-Shaped Target Based on Distributed Radar Networks</title><author>Choi, In-Oh ; Park, Sang-Hong ; Kang, Ki-Bong ; Lee, Seong-Hyeon ; Kim, Kyung-Tae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-8a0d82e84c17cc4323166ab6348e71ed30c7bebca036976d1d5512fa13cffe1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Decomposition</topic><topic>effective scatterer</topic><topic>History</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Image restoration</topic><topic>Independent component analysis</topic><topic>micro-Doppler frequency trajectory</topic><topic>Occlusion</topic><topic>Parameter estimation</topic><topic>Radar</topic><topic>Radar networks</topic><topic>radial-range history</topic><topic>Real time</topic><topic>real-time ballistic target discrimination</topic><topic>Sensors</topic><topic>Signal resolution</topic><topic>Trajectory</topic><topic>Two dimensional displays</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, In-Oh</creatorcontrib><creatorcontrib>Park, Sang-Hong</creatorcontrib><creatorcontrib>Kang, Ki-Bong</creatorcontrib><creatorcontrib>Lee, Seong-Hyeon</creatorcontrib><creatorcontrib>Kim, Kyung-Tae</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, In-Oh</au><au>Park, Sang-Hong</au><au>Kang, Ki-Bong</au><au>Lee, Seong-Hyeon</au><au>Kim, Kyung-Tae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Parameter Estimation for Cone-Shaped Target Based on Distributed Radar Networks</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>19</volume><issue>21</issue><spage>9736</spage><epage>9747</epage><pages>9736-9747</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>An echo signal received from a cone-shaped target with micro-motion is composed of a linear mixture of individual signals radiated from multiple effective scatterers with the occlusion effect, resulting in difficulties in parameter estimation for ballistic target discrimination (BTD). To solve this, conventional methods have been based on the sophisticated signal decomposition techniques using a 2D joint time-frequency (JTF) image or a 2D radial-range (RR) history image; however, they are inefficient for real-time BTD due to complex 2D image processing. Therefore, we propose a new parameter estimation framework consisting of five stages: 1) a normalization step; 2) signal decomposition and data association using independent component analysis in the distributed radar network; 3) estimation of dynamic parameters using 1D micro-Doppler frequency trajectories; 4) restoration of 1D RR histories; and 5) estimation of geometric parameters using the restored 1D RR histories. In particular, ICA of stage 2 is more time-saving than the conventional mathematical model-based methods using the 2D JTF image due to signal decomposition using the 1D normalized echo signals. Moreover, in the stage 4, high-quality 1D RR histories can be restored in spite of using the 2D RR history image with low resolution, compared with the conventional methods using 2D RR history image of very high resolution. In the simulations, we observed that our proposed framework is capable of performing efficient parameter estimation for the real-time BTD.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2019.2927921</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0410-1066</orcidid><orcidid>https://orcid.org/0000-0001-8512-1431</orcidid><orcidid>https://orcid.org/0000-0003-1200-5282</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2019-11, Vol.19 (21), p.9736-9747
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_8758795
source IEEE Electronic Library (IEL) Journals
subjects Computer simulation
Decomposition
effective scatterer
History
Image processing
Image resolution
Image restoration
Independent component analysis
micro-Doppler frequency trajectory
Occlusion
Parameter estimation
Radar
Radar networks
radial-range history
Real time
real-time ballistic target discrimination
Sensors
Signal resolution
Trajectory
Two dimensional displays
Two dimensional models
title Efficient Parameter Estimation for Cone-Shaped Target Based on Distributed Radar Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A38%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Parameter%20Estimation%20for%20Cone-Shaped%20Target%20Based%20on%20Distributed%20Radar%20Networks&rft.jtitle=IEEE%20sensors%20journal&rft.au=Choi,%20In-Oh&rft.date=2019-11-01&rft.volume=19&rft.issue=21&rft.spage=9736&rft.epage=9747&rft.pages=9736-9747&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2019.2927921&rft_dat=%3Cproquest_ieee_%3E2303954285%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-8a0d82e84c17cc4323166ab6348e71ed30c7bebca036976d1d5512fa13cffe1c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2303954285&rft_id=info:pmid/&rft_ieee_id=8758795&rfr_iscdi=true