Loading…

Whole-Body MPC for a Dynamically Stable Mobile Manipulator

Autonomous mobile manipulation offers a dual advantage of mobility provided by a mobile platform and dexterity afforded by the manipulator. In this letter, we present a whole-body optimal control framework to jointly solve the problems of manipulation, balancing and interaction, as one optimization...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters 2019-10, Vol.4 (4), p.3687-3694
Main Authors: Minniti, Maria Vittoria, Farshidian, Farbod, Grandia, Ruben, Hutter, Marco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-f02038b780b99f0fcd98b53289510d1676be08c90eff81e6fd062ed77155b3133
cites cdi_FETCH-LOGICAL-c291t-f02038b780b99f0fcd98b53289510d1676be08c90eff81e6fd062ed77155b3133
container_end_page 3694
container_issue 4
container_start_page 3687
container_title IEEE robotics and automation letters
container_volume 4
creator Minniti, Maria Vittoria
Farshidian, Farbod
Grandia, Ruben
Hutter, Marco
description Autonomous mobile manipulation offers a dual advantage of mobility provided by a mobile platform and dexterity afforded by the manipulator. In this letter, we present a whole-body optimal control framework to jointly solve the problems of manipulation, balancing and interaction, as one optimization problem for an inherently unstable robot. The optimization is performed using a model predictive control (MPC) approach; the optimal control problem is transcribed at the end-effector space, treating the position and orientation tasks in the MPC planner, and skillfully planning for end-effector contact forces. The proposed formulation evaluates how the control decisions aimed at end-effector tracking and environment interaction will affect the balance of the system in the future. We showcase the advantages of the proposed MPC approach on the example of a ball-balancing robot with a robotic manipulator and validate our controller in hardware experiments for tasks such as end-effector pose tracking and door opening.
doi_str_mv 10.1109/LRA.2019.2927955
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8758922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8758922</ieee_id><sourcerecordid>2296106093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-f02038b780b99f0fcd98b53289510d1676be08c90eff81e6fd062ed77155b3133</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWGr3gpsB11NvEvK47mq1KkxRfOAyJDMJTpk2NTNdzL-3Q4u4OnfxnXPhI-SSwpRSwJvibTZlQHHKkCkU4oSMGFcq50rK03_3OZm07QoAqGCKoxiR26_v2Pj8LlZ9tnydZyGmzGb3_cau69I2TZ-9d9Y1PltGVw9hN_V219gupgtyFmzT-skxx-Rz8fAxf8qLl8fn-azIS4a0ywMw4NopDQ4xQCgr1E5wplFQqKhU0nnQJYIPQVMvQwWS-UopKoTjlPMxuT7sblP82fm2M6u4S5v9S8MYSgoScKDgQJUptm3ywWxTvbapNxTMIMnsJZlBkjlK2leuDpXae_-HayU0MsZ_AY-4X_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296106093</pqid></control><display><type>article</type><title>Whole-Body MPC for a Dynamically Stable Mobile Manipulator</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Minniti, Maria Vittoria ; Farshidian, Farbod ; Grandia, Ruben ; Hutter, Marco</creator><creatorcontrib>Minniti, Maria Vittoria ; Farshidian, Farbod ; Grandia, Ruben ; Hutter, Marco</creatorcontrib><description>Autonomous mobile manipulation offers a dual advantage of mobility provided by a mobile platform and dexterity afforded by the manipulator. In this letter, we present a whole-body optimal control framework to jointly solve the problems of manipulation, balancing and interaction, as one optimization problem for an inherently unstable robot. The optimization is performed using a model predictive control (MPC) approach; the optimal control problem is transcribed at the end-effector space, treating the position and orientation tasks in the MPC planner, and skillfully planning for end-effector contact forces. The proposed formulation evaluates how the control decisions aimed at end-effector tracking and environment interaction will affect the balance of the system in the future. We showcase the advantages of the proposed MPC approach on the example of a ball-balancing robot with a robotic manipulator and validate our controller in hardware experiments for tasks such as end-effector pose tracking and door opening.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2019.2927955</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Balancing ; Contact force ; End effectors ; Manipulator dynamics ; Manipulators ; Mobile manipulation ; Optimal control ; Optimization ; optimization and optimal control ; Planning ; Predictive control ; Robot arms ; Robot kinematics ; Task analysis ; Tracking</subject><ispartof>IEEE robotics and automation letters, 2019-10, Vol.4 (4), p.3687-3694</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-f02038b780b99f0fcd98b53289510d1676be08c90eff81e6fd062ed77155b3133</citedby><cites>FETCH-LOGICAL-c291t-f02038b780b99f0fcd98b53289510d1676be08c90eff81e6fd062ed77155b3133</cites><orcidid>0000-0001-8269-6272 ; 0000-0001-7272-0937 ; 0000-0002-4285-4990 ; 0000-0002-8971-6843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8758922$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Minniti, Maria Vittoria</creatorcontrib><creatorcontrib>Farshidian, Farbod</creatorcontrib><creatorcontrib>Grandia, Ruben</creatorcontrib><creatorcontrib>Hutter, Marco</creatorcontrib><title>Whole-Body MPC for a Dynamically Stable Mobile Manipulator</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Autonomous mobile manipulation offers a dual advantage of mobility provided by a mobile platform and dexterity afforded by the manipulator. In this letter, we present a whole-body optimal control framework to jointly solve the problems of manipulation, balancing and interaction, as one optimization problem for an inherently unstable robot. The optimization is performed using a model predictive control (MPC) approach; the optimal control problem is transcribed at the end-effector space, treating the position and orientation tasks in the MPC planner, and skillfully planning for end-effector contact forces. The proposed formulation evaluates how the control decisions aimed at end-effector tracking and environment interaction will affect the balance of the system in the future. We showcase the advantages of the proposed MPC approach on the example of a ball-balancing robot with a robotic manipulator and validate our controller in hardware experiments for tasks such as end-effector pose tracking and door opening.</description><subject>Balancing</subject><subject>Contact force</subject><subject>End effectors</subject><subject>Manipulator dynamics</subject><subject>Manipulators</subject><subject>Mobile manipulation</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>optimization and optimal control</subject><subject>Planning</subject><subject>Predictive control</subject><subject>Robot arms</subject><subject>Robot kinematics</subject><subject>Task analysis</subject><subject>Tracking</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLAzEUhYMoWGr3gpsB11NvEvK47mq1KkxRfOAyJDMJTpk2NTNdzL-3Q4u4OnfxnXPhI-SSwpRSwJvibTZlQHHKkCkU4oSMGFcq50rK03_3OZm07QoAqGCKoxiR26_v2Pj8LlZ9tnydZyGmzGb3_cau69I2TZ-9d9Y1PltGVw9hN_V219gupgtyFmzT-skxx-Rz8fAxf8qLl8fn-azIS4a0ywMw4NopDQ4xQCgr1E5wplFQqKhU0nnQJYIPQVMvQwWS-UopKoTjlPMxuT7sblP82fm2M6u4S5v9S8MYSgoScKDgQJUptm3ywWxTvbapNxTMIMnsJZlBkjlK2leuDpXae_-HayU0MsZ_AY-4X_s</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Minniti, Maria Vittoria</creator><creator>Farshidian, Farbod</creator><creator>Grandia, Ruben</creator><creator>Hutter, Marco</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8269-6272</orcidid><orcidid>https://orcid.org/0000-0001-7272-0937</orcidid><orcidid>https://orcid.org/0000-0002-4285-4990</orcidid><orcidid>https://orcid.org/0000-0002-8971-6843</orcidid></search><sort><creationdate>20191001</creationdate><title>Whole-Body MPC for a Dynamically Stable Mobile Manipulator</title><author>Minniti, Maria Vittoria ; Farshidian, Farbod ; Grandia, Ruben ; Hutter, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-f02038b780b99f0fcd98b53289510d1676be08c90eff81e6fd062ed77155b3133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Balancing</topic><topic>Contact force</topic><topic>End effectors</topic><topic>Manipulator dynamics</topic><topic>Manipulators</topic><topic>Mobile manipulation</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>optimization and optimal control</topic><topic>Planning</topic><topic>Predictive control</topic><topic>Robot arms</topic><topic>Robot kinematics</topic><topic>Task analysis</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minniti, Maria Vittoria</creatorcontrib><creatorcontrib>Farshidian, Farbod</creatorcontrib><creatorcontrib>Grandia, Ruben</creatorcontrib><creatorcontrib>Hutter, Marco</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minniti, Maria Vittoria</au><au>Farshidian, Farbod</au><au>Grandia, Ruben</au><au>Hutter, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Whole-Body MPC for a Dynamically Stable Mobile Manipulator</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>4</volume><issue>4</issue><spage>3687</spage><epage>3694</epage><pages>3687-3694</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Autonomous mobile manipulation offers a dual advantage of mobility provided by a mobile platform and dexterity afforded by the manipulator. In this letter, we present a whole-body optimal control framework to jointly solve the problems of manipulation, balancing and interaction, as one optimization problem for an inherently unstable robot. The optimization is performed using a model predictive control (MPC) approach; the optimal control problem is transcribed at the end-effector space, treating the position and orientation tasks in the MPC planner, and skillfully planning for end-effector contact forces. The proposed formulation evaluates how the control decisions aimed at end-effector tracking and environment interaction will affect the balance of the system in the future. We showcase the advantages of the proposed MPC approach on the example of a ball-balancing robot with a robotic manipulator and validate our controller in hardware experiments for tasks such as end-effector pose tracking and door opening.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2019.2927955</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8269-6272</orcidid><orcidid>https://orcid.org/0000-0001-7272-0937</orcidid><orcidid>https://orcid.org/0000-0002-4285-4990</orcidid><orcidid>https://orcid.org/0000-0002-8971-6843</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2019-10, Vol.4 (4), p.3687-3694
issn 2377-3766
2377-3766
language eng
recordid cdi_ieee_primary_8758922
source IEEE Electronic Library (IEL) Journals
subjects Balancing
Contact force
End effectors
Manipulator dynamics
Manipulators
Mobile manipulation
Optimal control
Optimization
optimization and optimal control
Planning
Predictive control
Robot arms
Robot kinematics
Task analysis
Tracking
title Whole-Body MPC for a Dynamically Stable Mobile Manipulator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T00%3A58%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Whole-Body%20MPC%20for%20a%20Dynamically%20Stable%20Mobile%20Manipulator&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Minniti,%20Maria%20Vittoria&rft.date=2019-10-01&rft.volume=4&rft.issue=4&rft.spage=3687&rft.epage=3694&rft.pages=3687-3694&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2019.2927955&rft_dat=%3Cproquest_ieee_%3E2296106093%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-f02038b780b99f0fcd98b53289510d1676be08c90eff81e6fd062ed77155b3133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2296106093&rft_id=info:pmid/&rft_ieee_id=8758922&rfr_iscdi=true