Loading…
Whole-Body MPC for a Dynamically Stable Mobile Manipulator
Autonomous mobile manipulation offers a dual advantage of mobility provided by a mobile platform and dexterity afforded by the manipulator. In this letter, we present a whole-body optimal control framework to jointly solve the problems of manipulation, balancing and interaction, as one optimization...
Saved in:
Published in: | IEEE robotics and automation letters 2019-10, Vol.4 (4), p.3687-3694 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-f02038b780b99f0fcd98b53289510d1676be08c90eff81e6fd062ed77155b3133 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-f02038b780b99f0fcd98b53289510d1676be08c90eff81e6fd062ed77155b3133 |
container_end_page | 3694 |
container_issue | 4 |
container_start_page | 3687 |
container_title | IEEE robotics and automation letters |
container_volume | 4 |
creator | Minniti, Maria Vittoria Farshidian, Farbod Grandia, Ruben Hutter, Marco |
description | Autonomous mobile manipulation offers a dual advantage of mobility provided by a mobile platform and dexterity afforded by the manipulator. In this letter, we present a whole-body optimal control framework to jointly solve the problems of manipulation, balancing and interaction, as one optimization problem for an inherently unstable robot. The optimization is performed using a model predictive control (MPC) approach; the optimal control problem is transcribed at the end-effector space, treating the position and orientation tasks in the MPC planner, and skillfully planning for end-effector contact forces. The proposed formulation evaluates how the control decisions aimed at end-effector tracking and environment interaction will affect the balance of the system in the future. We showcase the advantages of the proposed MPC approach on the example of a ball-balancing robot with a robotic manipulator and validate our controller in hardware experiments for tasks such as end-effector pose tracking and door opening. |
doi_str_mv | 10.1109/LRA.2019.2927955 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8758922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8758922</ieee_id><sourcerecordid>2296106093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-f02038b780b99f0fcd98b53289510d1676be08c90eff81e6fd062ed77155b3133</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWGr3gpsB11NvEvK47mq1KkxRfOAyJDMJTpk2NTNdzL-3Q4u4OnfxnXPhI-SSwpRSwJvibTZlQHHKkCkU4oSMGFcq50rK03_3OZm07QoAqGCKoxiR26_v2Pj8LlZ9tnydZyGmzGb3_cau69I2TZ-9d9Y1PltGVw9hN_V219gupgtyFmzT-skxx-Rz8fAxf8qLl8fn-azIS4a0ywMw4NopDQ4xQCgr1E5wplFQqKhU0nnQJYIPQVMvQwWS-UopKoTjlPMxuT7sblP82fm2M6u4S5v9S8MYSgoScKDgQJUptm3ywWxTvbapNxTMIMnsJZlBkjlK2leuDpXae_-HayU0MsZ_AY-4X_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296106093</pqid></control><display><type>article</type><title>Whole-Body MPC for a Dynamically Stable Mobile Manipulator</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Minniti, Maria Vittoria ; Farshidian, Farbod ; Grandia, Ruben ; Hutter, Marco</creator><creatorcontrib>Minniti, Maria Vittoria ; Farshidian, Farbod ; Grandia, Ruben ; Hutter, Marco</creatorcontrib><description>Autonomous mobile manipulation offers a dual advantage of mobility provided by a mobile platform and dexterity afforded by the manipulator. In this letter, we present a whole-body optimal control framework to jointly solve the problems of manipulation, balancing and interaction, as one optimization problem for an inherently unstable robot. The optimization is performed using a model predictive control (MPC) approach; the optimal control problem is transcribed at the end-effector space, treating the position and orientation tasks in the MPC planner, and skillfully planning for end-effector contact forces. The proposed formulation evaluates how the control decisions aimed at end-effector tracking and environment interaction will affect the balance of the system in the future. We showcase the advantages of the proposed MPC approach on the example of a ball-balancing robot with a robotic manipulator and validate our controller in hardware experiments for tasks such as end-effector pose tracking and door opening.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2019.2927955</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Balancing ; Contact force ; End effectors ; Manipulator dynamics ; Manipulators ; Mobile manipulation ; Optimal control ; Optimization ; optimization and optimal control ; Planning ; Predictive control ; Robot arms ; Robot kinematics ; Task analysis ; Tracking</subject><ispartof>IEEE robotics and automation letters, 2019-10, Vol.4 (4), p.3687-3694</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-f02038b780b99f0fcd98b53289510d1676be08c90eff81e6fd062ed77155b3133</citedby><cites>FETCH-LOGICAL-c291t-f02038b780b99f0fcd98b53289510d1676be08c90eff81e6fd062ed77155b3133</cites><orcidid>0000-0001-8269-6272 ; 0000-0001-7272-0937 ; 0000-0002-4285-4990 ; 0000-0002-8971-6843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8758922$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Minniti, Maria Vittoria</creatorcontrib><creatorcontrib>Farshidian, Farbod</creatorcontrib><creatorcontrib>Grandia, Ruben</creatorcontrib><creatorcontrib>Hutter, Marco</creatorcontrib><title>Whole-Body MPC for a Dynamically Stable Mobile Manipulator</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Autonomous mobile manipulation offers a dual advantage of mobility provided by a mobile platform and dexterity afforded by the manipulator. In this letter, we present a whole-body optimal control framework to jointly solve the problems of manipulation, balancing and interaction, as one optimization problem for an inherently unstable robot. The optimization is performed using a model predictive control (MPC) approach; the optimal control problem is transcribed at the end-effector space, treating the position and orientation tasks in the MPC planner, and skillfully planning for end-effector contact forces. The proposed formulation evaluates how the control decisions aimed at end-effector tracking and environment interaction will affect the balance of the system in the future. We showcase the advantages of the proposed MPC approach on the example of a ball-balancing robot with a robotic manipulator and validate our controller in hardware experiments for tasks such as end-effector pose tracking and door opening.</description><subject>Balancing</subject><subject>Contact force</subject><subject>End effectors</subject><subject>Manipulator dynamics</subject><subject>Manipulators</subject><subject>Mobile manipulation</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>optimization and optimal control</subject><subject>Planning</subject><subject>Predictive control</subject><subject>Robot arms</subject><subject>Robot kinematics</subject><subject>Task analysis</subject><subject>Tracking</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLAzEUhYMoWGr3gpsB11NvEvK47mq1KkxRfOAyJDMJTpk2NTNdzL-3Q4u4OnfxnXPhI-SSwpRSwJvibTZlQHHKkCkU4oSMGFcq50rK03_3OZm07QoAqGCKoxiR26_v2Pj8LlZ9tnydZyGmzGb3_cau69I2TZ-9d9Y1PltGVw9hN_V219gupgtyFmzT-skxx-Rz8fAxf8qLl8fn-azIS4a0ywMw4NopDQ4xQCgr1E5wplFQqKhU0nnQJYIPQVMvQwWS-UopKoTjlPMxuT7sblP82fm2M6u4S5v9S8MYSgoScKDgQJUptm3ywWxTvbapNxTMIMnsJZlBkjlK2leuDpXae_-HayU0MsZ_AY-4X_s</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Minniti, Maria Vittoria</creator><creator>Farshidian, Farbod</creator><creator>Grandia, Ruben</creator><creator>Hutter, Marco</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8269-6272</orcidid><orcidid>https://orcid.org/0000-0001-7272-0937</orcidid><orcidid>https://orcid.org/0000-0002-4285-4990</orcidid><orcidid>https://orcid.org/0000-0002-8971-6843</orcidid></search><sort><creationdate>20191001</creationdate><title>Whole-Body MPC for a Dynamically Stable Mobile Manipulator</title><author>Minniti, Maria Vittoria ; Farshidian, Farbod ; Grandia, Ruben ; Hutter, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-f02038b780b99f0fcd98b53289510d1676be08c90eff81e6fd062ed77155b3133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Balancing</topic><topic>Contact force</topic><topic>End effectors</topic><topic>Manipulator dynamics</topic><topic>Manipulators</topic><topic>Mobile manipulation</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>optimization and optimal control</topic><topic>Planning</topic><topic>Predictive control</topic><topic>Robot arms</topic><topic>Robot kinematics</topic><topic>Task analysis</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minniti, Maria Vittoria</creatorcontrib><creatorcontrib>Farshidian, Farbod</creatorcontrib><creatorcontrib>Grandia, Ruben</creatorcontrib><creatorcontrib>Hutter, Marco</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minniti, Maria Vittoria</au><au>Farshidian, Farbod</au><au>Grandia, Ruben</au><au>Hutter, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Whole-Body MPC for a Dynamically Stable Mobile Manipulator</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>4</volume><issue>4</issue><spage>3687</spage><epage>3694</epage><pages>3687-3694</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Autonomous mobile manipulation offers a dual advantage of mobility provided by a mobile platform and dexterity afforded by the manipulator. In this letter, we present a whole-body optimal control framework to jointly solve the problems of manipulation, balancing and interaction, as one optimization problem for an inherently unstable robot. The optimization is performed using a model predictive control (MPC) approach; the optimal control problem is transcribed at the end-effector space, treating the position and orientation tasks in the MPC planner, and skillfully planning for end-effector contact forces. The proposed formulation evaluates how the control decisions aimed at end-effector tracking and environment interaction will affect the balance of the system in the future. We showcase the advantages of the proposed MPC approach on the example of a ball-balancing robot with a robotic manipulator and validate our controller in hardware experiments for tasks such as end-effector pose tracking and door opening.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2019.2927955</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8269-6272</orcidid><orcidid>https://orcid.org/0000-0001-7272-0937</orcidid><orcidid>https://orcid.org/0000-0002-4285-4990</orcidid><orcidid>https://orcid.org/0000-0002-8971-6843</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2019-10, Vol.4 (4), p.3687-3694 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_ieee_primary_8758922 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Balancing Contact force End effectors Manipulator dynamics Manipulators Mobile manipulation Optimal control Optimization optimization and optimal control Planning Predictive control Robot arms Robot kinematics Task analysis Tracking |
title | Whole-Body MPC for a Dynamically Stable Mobile Manipulator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T00%3A58%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Whole-Body%20MPC%20for%20a%20Dynamically%20Stable%20Mobile%20Manipulator&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Minniti,%20Maria%20Vittoria&rft.date=2019-10-01&rft.volume=4&rft.issue=4&rft.spage=3687&rft.epage=3694&rft.pages=3687-3694&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2019.2927955&rft_dat=%3Cproquest_ieee_%3E2296106093%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-f02038b780b99f0fcd98b53289510d1676be08c90eff81e6fd062ed77155b3133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2296106093&rft_id=info:pmid/&rft_ieee_id=8758922&rfr_iscdi=true |