Loading…

Multi-Focus Ultrasound Imaging Using Generative Adversarial Networks

Ultrasound (US) beam can be focused at multiple locations to increase the lateral resolution of the resulting images. However, this improvement in resolution comes at the expense of a loss in frame rate, which is essential in many applications such as imaging moving anatomy. Herein, we propose a nov...

Full description

Saved in:
Bibliographic Details
Main Authors: Goudarzi, Sobhan, Asif, Amir, Rivaz, Hassan
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c223t-985d4d303c42ffd38eabc1955a3fd3e80245c09c7185d0110490a6b00ba61a83
cites
container_end_page 1121
container_issue
container_start_page 1118
container_title
container_volume
creator Goudarzi, Sobhan
Asif, Amir
Rivaz, Hassan
description Ultrasound (US) beam can be focused at multiple locations to increase the lateral resolution of the resulting images. However, this improvement in resolution comes at the expense of a loss in frame rate, which is essential in many applications such as imaging moving anatomy. Herein, we propose a novel method based on Generative Adversarial Network (GAN) for achieving multi-focus line-per-line US image without a reduction in the frame rate. Results on simulated phantoms as well as real phantom experiments show that the proposed deep learning framework is able to substantially improve the resolution without sacrificing the frame rate.
doi_str_mv 10.1109/ISBI.2019.8759216
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_8759216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8759216</ieee_id><sourcerecordid>8759216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-985d4d303c42ffd38eabc1955a3fd3e80245c09c7185d0110490a6b00ba61a83</originalsourceid><addsrcrecordid>eNotj91Kw0AUhFdBsNQ8gHiTF0g8Z3-S3ctabQ1UvbC9LiebTYmmiewmFd_eiJ2LGQaGgY-xW4QUEcx98f5QpBzQpDpXhmN2wSKTa1RCZyKTiJdshkaqREvFr1kUwgdMyqUUIGfs8WVshyZZ9XYM8a4dPIV-7Kq4ONKh6Q7xLvz52nXO09CcXLyoTs4H8g218asbvnv_GW7YVU1tcNE552y7etoun5PN27pYLjaJ5VwMidGqkpUAYSWv60poR6VFoxSJqTkNXCoLxuY4DWGikwYoKwFKypC0mLO7_9vGObf_8s2R_M_-jC1-AawySyY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-Focus Ultrasound Imaging Using Generative Adversarial Networks</title><source>IEEE Xplore All Conference Series</source><creator>Goudarzi, Sobhan ; Asif, Amir ; Rivaz, Hassan</creator><creatorcontrib>Goudarzi, Sobhan ; Asif, Amir ; Rivaz, Hassan</creatorcontrib><description>Ultrasound (US) beam can be focused at multiple locations to increase the lateral resolution of the resulting images. However, this improvement in resolution comes at the expense of a loss in frame rate, which is essential in many applications such as imaging moving anatomy. Herein, we propose a novel method based on Generative Adversarial Network (GAN) for achieving multi-focus line-per-line US image without a reduction in the frame rate. Results on simulated phantoms as well as real phantom experiments show that the proposed deep learning framework is able to substantially improve the resolution without sacrificing the frame rate.</description><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 9781538636411</identifier><identifier>EISBN: 1538636417</identifier><identifier>DOI: 10.1109/ISBI.2019.8759216</identifier><language>eng</language><publisher>IEEE</publisher><subject>adversarial loss ; focal point ; frame rate ; Gallium nitride ; generative adversarial network ; Generative adversarial networks ; Generators ; Phantoms ; Training ; Ultrasonic imaging ; ultrasound imaging</subject><ispartof>2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 2019, p.1118-1121</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-985d4d303c42ffd38eabc1955a3fd3e80245c09c7185d0110490a6b00ba61a83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8759216$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8759216$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Goudarzi, Sobhan</creatorcontrib><creatorcontrib>Asif, Amir</creatorcontrib><creatorcontrib>Rivaz, Hassan</creatorcontrib><title>Multi-Focus Ultrasound Imaging Using Generative Adversarial Networks</title><title>2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)</title><addtitle>ISBI</addtitle><description>Ultrasound (US) beam can be focused at multiple locations to increase the lateral resolution of the resulting images. However, this improvement in resolution comes at the expense of a loss in frame rate, which is essential in many applications such as imaging moving anatomy. Herein, we propose a novel method based on Generative Adversarial Network (GAN) for achieving multi-focus line-per-line US image without a reduction in the frame rate. Results on simulated phantoms as well as real phantom experiments show that the proposed deep learning framework is able to substantially improve the resolution without sacrificing the frame rate.</description><subject>adversarial loss</subject><subject>focal point</subject><subject>frame rate</subject><subject>Gallium nitride</subject><subject>generative adversarial network</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>Phantoms</subject><subject>Training</subject><subject>Ultrasonic imaging</subject><subject>ultrasound imaging</subject><issn>1945-8452</issn><isbn>9781538636411</isbn><isbn>1538636417</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj91Kw0AUhFdBsNQ8gHiTF0g8Z3-S3ctabQ1UvbC9LiebTYmmiewmFd_eiJ2LGQaGgY-xW4QUEcx98f5QpBzQpDpXhmN2wSKTa1RCZyKTiJdshkaqREvFr1kUwgdMyqUUIGfs8WVshyZZ9XYM8a4dPIV-7Kq4ONKh6Q7xLvz52nXO09CcXLyoTs4H8g218asbvnv_GW7YVU1tcNE552y7etoun5PN27pYLjaJ5VwMidGqkpUAYSWv60poR6VFoxSJqTkNXCoLxuY4DWGikwYoKwFKypC0mLO7_9vGObf_8s2R_M_-jC1-AawySyY</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Goudarzi, Sobhan</creator><creator>Asif, Amir</creator><creator>Rivaz, Hassan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201904</creationdate><title>Multi-Focus Ultrasound Imaging Using Generative Adversarial Networks</title><author>Goudarzi, Sobhan ; Asif, Amir ; Rivaz, Hassan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-985d4d303c42ffd38eabc1955a3fd3e80245c09c7185d0110490a6b00ba61a83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>adversarial loss</topic><topic>focal point</topic><topic>frame rate</topic><topic>Gallium nitride</topic><topic>generative adversarial network</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>Phantoms</topic><topic>Training</topic><topic>Ultrasonic imaging</topic><topic>ultrasound imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Goudarzi, Sobhan</creatorcontrib><creatorcontrib>Asif, Amir</creatorcontrib><creatorcontrib>Rivaz, Hassan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Goudarzi, Sobhan</au><au>Asif, Amir</au><au>Rivaz, Hassan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-Focus Ultrasound Imaging Using Generative Adversarial Networks</atitle><btitle>2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)</btitle><stitle>ISBI</stitle><date>2019-04</date><risdate>2019</risdate><spage>1118</spage><epage>1121</epage><pages>1118-1121</pages><eissn>1945-8452</eissn><eisbn>9781538636411</eisbn><eisbn>1538636417</eisbn><abstract>Ultrasound (US) beam can be focused at multiple locations to increase the lateral resolution of the resulting images. However, this improvement in resolution comes at the expense of a loss in frame rate, which is essential in many applications such as imaging moving anatomy. Herein, we propose a novel method based on Generative Adversarial Network (GAN) for achieving multi-focus line-per-line US image without a reduction in the frame rate. Results on simulated phantoms as well as real phantom experiments show that the proposed deep learning framework is able to substantially improve the resolution without sacrificing the frame rate.</abstract><pub>IEEE</pub><doi>10.1109/ISBI.2019.8759216</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1945-8452
ispartof 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 2019, p.1118-1121
issn 1945-8452
language eng
recordid cdi_ieee_primary_8759216
source IEEE Xplore All Conference Series
subjects adversarial loss
focal point
frame rate
Gallium nitride
generative adversarial network
Generative adversarial networks
Generators
Phantoms
Training
Ultrasonic imaging
ultrasound imaging
title Multi-Focus Ultrasound Imaging Using Generative Adversarial Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A00%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-Focus%20Ultrasound%20Imaging%20Using%20Generative%20Adversarial%20Networks&rft.btitle=2019%20IEEE%2016th%20International%20Symposium%20on%20Biomedical%20Imaging%20(ISBI%202019)&rft.au=Goudarzi,%20Sobhan&rft.date=2019-04&rft.spage=1118&rft.epage=1121&rft.pages=1118-1121&rft.eissn=1945-8452&rft_id=info:doi/10.1109/ISBI.2019.8759216&rft.eisbn=9781538636411&rft.eisbn_list=1538636417&rft_dat=%3Cieee_CHZPO%3E8759216%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c223t-985d4d303c42ffd38eabc1955a3fd3e80245c09c7185d0110490a6b00ba61a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8759216&rfr_iscdi=true