Loading…

Embeddable Circuit for Orientation Independent Processing in Ultra Low-Power Tri-Axial Inertial Sensors

In this brief, a new custom circuit is proposed to make the acquisitions of low-power tri-axial accelerometers independent from the spatial orientation of the sensors. For the purpose, a new vector rotation algorithm has been developed in order to reduce the overall computational effort and the comp...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2020-06, Vol.67 (6), p.1124-1128
Main Authors: De Vita, Antonio, Licciardo, Gian Domenico, Femia, Aldo, Di Benedetto, Luigi, Rubino, Alfredo, Pau, Danilo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-2e7e6f0d9e8c2638fcd2ad1d58e88c4f9838b8627b22005ba98b65b5a93bc9ad3
cites cdi_FETCH-LOGICAL-c295t-2e7e6f0d9e8c2638fcd2ad1d58e88c4f9838b8627b22005ba98b65b5a93bc9ad3
container_end_page 1128
container_issue 6
container_start_page 1124
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 67
creator De Vita, Antonio
Licciardo, Gian Domenico
Femia, Aldo
Di Benedetto, Luigi
Rubino, Alfredo
Pau, Danilo
description In this brief, a new custom circuit is proposed to make the acquisitions of low-power tri-axial accelerometers independent from the spatial orientation of the sensors. For the purpose, a new vector rotation algorithm has been developed in order to reduce the overall computational effort and the complexity of the resulting circuit. The modularity of the computational scheme and the specific design choices have limited the area occupancy and the power dissipation of the circuit to negligible values with respect to the circuitry embedded in typical low-power accelerometers. The design has been prototyped with a Xilinx Artix-7 FPGA, where it achieves a maximum throughput of 81.2 kHz. Synthesis using a 65-nm CMOS standard cells library provides a maximum throughput of 223 kHz and an occupied area of 0.024 mm 2 . By setting the sample rate of the sensor to 25 Hz used as reference in many motion sensing applications, the standard cells power dissipation is about 1 μW. Comparisons with the state-of-the-art in the literature show a maximum area and power reduction of 40% and 55%, respectively.
doi_str_mv 10.1109/TCSII.2019.2928476
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8760571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8760571</ieee_id><sourcerecordid>2408657338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-2e7e6f0d9e8c2638fcd2ad1d58e88c4f9838b8627b22005ba98b65b5a93bc9ad3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhosoOKd_QG8CXnfmo2mSyzGmFgYbbLsuSXM6MrpmJh3Tf2_rhjfnvBfvcw48SfJM8IQQrN42s3VRTCgmakIVlZnIb5IR4VymTChyO-RMpUJk4j55iHGPMVWY0VGymx8MWKtNA2jmQnVyHap9QMvgoO1053yLitbCEfrRdmgVfAUxunaHXIu2TRc0WvhzuvJnCGgTXDr9drrpGQjdENbQRh_iY3JX6ybC03WPk-37fDP7TBfLj2I2XaQVVbxLKQjIa2wVyIrmTNaVpdoSyyVIWWW1kkwamVNhKMWYG62kybnhWjFTKW3ZOHm93D0G_3WC2JV7fwpt_7KkGZY5F4zJvkUvrSr4GAPU5TG4gw4_JcHlILT8E1oOQsur0B56uUAOAP4BKXLMBWG__8dzCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408657338</pqid></control><display><type>article</type><title>Embeddable Circuit for Orientation Independent Processing in Ultra Low-Power Tri-Axial Inertial Sensors</title><source>IEEE Xplore (Online service)</source><creator>De Vita, Antonio ; Licciardo, Gian Domenico ; Femia, Aldo ; Di Benedetto, Luigi ; Rubino, Alfredo ; Pau, Danilo</creator><creatorcontrib>De Vita, Antonio ; Licciardo, Gian Domenico ; Femia, Aldo ; Di Benedetto, Luigi ; Rubino, Alfredo ; Pau, Danilo</creatorcontrib><description>In this brief, a new custom circuit is proposed to make the acquisitions of low-power tri-axial accelerometers independent from the spatial orientation of the sensors. For the purpose, a new vector rotation algorithm has been developed in order to reduce the overall computational effort and the complexity of the resulting circuit. The modularity of the computational scheme and the specific design choices have limited the area occupancy and the power dissipation of the circuit to negligible values with respect to the circuitry embedded in typical low-power accelerometers. The design has been prototyped with a Xilinx Artix-7 FPGA, where it achieves a maximum throughput of 81.2 kHz. Synthesis using a 65-nm CMOS standard cells library provides a maximum throughput of 223 kHz and an occupied area of 0.024 mm 2 . By setting the sample rate of the sensor to 25 Hz used as reference in many motion sensing applications, the standard cells power dissipation is about 1 μW. Comparisons with the state-of-the-art in the literature show a maximum area and power reduction of 40% and 55%, respectively.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2019.2928476</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Accelerometers ; Algorithms ; Circuit design ; Circuits ; CMOS ; FPGA ; Inertial sensing devices ; Inertial sensors ; Intelligent sensors ; low-power ; Modularity ; Occupancy ; Power dissipation ; Quaternions ; Sensors ; smart sensors ; Throughput ; wearable systems</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2020-06, Vol.67 (6), p.1124-1128</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-2e7e6f0d9e8c2638fcd2ad1d58e88c4f9838b8627b22005ba98b65b5a93bc9ad3</citedby><cites>FETCH-LOGICAL-c295t-2e7e6f0d9e8c2638fcd2ad1d58e88c4f9838b8627b22005ba98b65b5a93bc9ad3</cites><orcidid>0000-0002-1913-4928 ; 0000-0001-5588-0621 ; 0000-0002-4373-1001</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8760571$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>De Vita, Antonio</creatorcontrib><creatorcontrib>Licciardo, Gian Domenico</creatorcontrib><creatorcontrib>Femia, Aldo</creatorcontrib><creatorcontrib>Di Benedetto, Luigi</creatorcontrib><creatorcontrib>Rubino, Alfredo</creatorcontrib><creatorcontrib>Pau, Danilo</creatorcontrib><title>Embeddable Circuit for Orientation Independent Processing in Ultra Low-Power Tri-Axial Inertial Sensors</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>In this brief, a new custom circuit is proposed to make the acquisitions of low-power tri-axial accelerometers independent from the spatial orientation of the sensors. For the purpose, a new vector rotation algorithm has been developed in order to reduce the overall computational effort and the complexity of the resulting circuit. The modularity of the computational scheme and the specific design choices have limited the area occupancy and the power dissipation of the circuit to negligible values with respect to the circuitry embedded in typical low-power accelerometers. The design has been prototyped with a Xilinx Artix-7 FPGA, where it achieves a maximum throughput of 81.2 kHz. Synthesis using a 65-nm CMOS standard cells library provides a maximum throughput of 223 kHz and an occupied area of 0.024 mm 2 . By setting the sample rate of the sensor to 25 Hz used as reference in many motion sensing applications, the standard cells power dissipation is about 1 μW. Comparisons with the state-of-the-art in the literature show a maximum area and power reduction of 40% and 55%, respectively.</description><subject>Acceleration</subject><subject>Accelerometers</subject><subject>Algorithms</subject><subject>Circuit design</subject><subject>Circuits</subject><subject>CMOS</subject><subject>FPGA</subject><subject>Inertial sensing devices</subject><subject>Inertial sensors</subject><subject>Intelligent sensors</subject><subject>low-power</subject><subject>Modularity</subject><subject>Occupancy</subject><subject>Power dissipation</subject><subject>Quaternions</subject><subject>Sensors</subject><subject>smart sensors</subject><subject>Throughput</subject><subject>wearable systems</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhosoOKd_QG8CXnfmo2mSyzGmFgYbbLsuSXM6MrpmJh3Tf2_rhjfnvBfvcw48SfJM8IQQrN42s3VRTCgmakIVlZnIb5IR4VymTChyO-RMpUJk4j55iHGPMVWY0VGymx8MWKtNA2jmQnVyHap9QMvgoO1053yLitbCEfrRdmgVfAUxunaHXIu2TRc0WvhzuvJnCGgTXDr9drrpGQjdENbQRh_iY3JX6ybC03WPk-37fDP7TBfLj2I2XaQVVbxLKQjIa2wVyIrmTNaVpdoSyyVIWWW1kkwamVNhKMWYG62kybnhWjFTKW3ZOHm93D0G_3WC2JV7fwpt_7KkGZY5F4zJvkUvrSr4GAPU5TG4gw4_JcHlILT8E1oOQsur0B56uUAOAP4BKXLMBWG__8dzCw</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>De Vita, Antonio</creator><creator>Licciardo, Gian Domenico</creator><creator>Femia, Aldo</creator><creator>Di Benedetto, Luigi</creator><creator>Rubino, Alfredo</creator><creator>Pau, Danilo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1913-4928</orcidid><orcidid>https://orcid.org/0000-0001-5588-0621</orcidid><orcidid>https://orcid.org/0000-0002-4373-1001</orcidid></search><sort><creationdate>20200601</creationdate><title>Embeddable Circuit for Orientation Independent Processing in Ultra Low-Power Tri-Axial Inertial Sensors</title><author>De Vita, Antonio ; Licciardo, Gian Domenico ; Femia, Aldo ; Di Benedetto, Luigi ; Rubino, Alfredo ; Pau, Danilo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-2e7e6f0d9e8c2638fcd2ad1d58e88c4f9838b8627b22005ba98b65b5a93bc9ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acceleration</topic><topic>Accelerometers</topic><topic>Algorithms</topic><topic>Circuit design</topic><topic>Circuits</topic><topic>CMOS</topic><topic>FPGA</topic><topic>Inertial sensing devices</topic><topic>Inertial sensors</topic><topic>Intelligent sensors</topic><topic>low-power</topic><topic>Modularity</topic><topic>Occupancy</topic><topic>Power dissipation</topic><topic>Quaternions</topic><topic>Sensors</topic><topic>smart sensors</topic><topic>Throughput</topic><topic>wearable systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Vita, Antonio</creatorcontrib><creatorcontrib>Licciardo, Gian Domenico</creatorcontrib><creatorcontrib>Femia, Aldo</creatorcontrib><creatorcontrib>Di Benedetto, Luigi</creatorcontrib><creatorcontrib>Rubino, Alfredo</creatorcontrib><creatorcontrib>Pau, Danilo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Vita, Antonio</au><au>Licciardo, Gian Domenico</au><au>Femia, Aldo</au><au>Di Benedetto, Luigi</au><au>Rubino, Alfredo</au><au>Pau, Danilo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Embeddable Circuit for Orientation Independent Processing in Ultra Low-Power Tri-Axial Inertial Sensors</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>67</volume><issue>6</issue><spage>1124</spage><epage>1128</epage><pages>1124-1128</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>In this brief, a new custom circuit is proposed to make the acquisitions of low-power tri-axial accelerometers independent from the spatial orientation of the sensors. For the purpose, a new vector rotation algorithm has been developed in order to reduce the overall computational effort and the complexity of the resulting circuit. The modularity of the computational scheme and the specific design choices have limited the area occupancy and the power dissipation of the circuit to negligible values with respect to the circuitry embedded in typical low-power accelerometers. The design has been prototyped with a Xilinx Artix-7 FPGA, where it achieves a maximum throughput of 81.2 kHz. Synthesis using a 65-nm CMOS standard cells library provides a maximum throughput of 223 kHz and an occupied area of 0.024 mm 2 . By setting the sample rate of the sensor to 25 Hz used as reference in many motion sensing applications, the standard cells power dissipation is about 1 μW. Comparisons with the state-of-the-art in the literature show a maximum area and power reduction of 40% and 55%, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2019.2928476</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1913-4928</orcidid><orcidid>https://orcid.org/0000-0001-5588-0621</orcidid><orcidid>https://orcid.org/0000-0002-4373-1001</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2020-06, Vol.67 (6), p.1124-1128
issn 1549-7747
1558-3791
language eng
recordid cdi_ieee_primary_8760571
source IEEE Xplore (Online service)
subjects Acceleration
Accelerometers
Algorithms
Circuit design
Circuits
CMOS
FPGA
Inertial sensing devices
Inertial sensors
Intelligent sensors
low-power
Modularity
Occupancy
Power dissipation
Quaternions
Sensors
smart sensors
Throughput
wearable systems
title Embeddable Circuit for Orientation Independent Processing in Ultra Low-Power Tri-Axial Inertial Sensors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A10%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Embeddable%20Circuit%20for%20Orientation%20Independent%20Processing%20in%20Ultra%20Low-Power%20Tri-Axial%20Inertial%20Sensors&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=De%20Vita,%20Antonio&rft.date=2020-06-01&rft.volume=67&rft.issue=6&rft.spage=1124&rft.epage=1128&rft.pages=1124-1128&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2019.2928476&rft_dat=%3Cproquest_ieee_%3E2408657338%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-2e7e6f0d9e8c2638fcd2ad1d58e88c4f9838b8627b22005ba98b65b5a93bc9ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2408657338&rft_id=info:pmid/&rft_ieee_id=8760571&rfr_iscdi=true