Loading…
GAN-DP: Generative Adversarial Net Driven Differentially Privacy-Preserving Big Data Publishing
Increasing massive volume of data are generated every single second in this big data era. With big data from multiple sources, adversaries continuously mine private information for potential benefits. Motivated by this, we propose a generative adversarial net (GAN) driven noise generation method und...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Increasing massive volume of data are generated every single second in this big data era. With big data from multiple sources, adversaries continuously mine private information for potential benefits. Motivated by this, we propose a generative adversarial net (GAN) driven noise generation method under the framework of differential privacy. We add one more perceptron, which is a specifically devised differential privacy identifier. After the generator produces the noise, the discriminator and the proposed identifier game with each other to derive the Nash Equilibrium. Extensive experimental results demonstrate the proposed model meets differential privacy constraints and upgrade data utility simultaneously. |
---|---|
ISSN: | 1938-1883 |
DOI: | 10.1109/ICC.2019.8761070 |